Stay cables with various surface profiles were tested in wind tunnel. Dimples and helical fillets were applied to mitigate the rain- wind induced vibration. The rain-wind excited responses of the cable with smooth sur...Stay cables with various surface profiles were tested in wind tunnel. Dimples and helical fillets were applied to mitigate the rain- wind induced vibration. The rain-wind excited responses of the cable with smooth surface were larger than those of the cables with dimples and helical fillets. At high Reynolds number, the drag coefficients of cables with dimples and helical fillets are much larger than those of smooth surface cable.展开更多
All underwater drilling and blasting operations generate seismic waves.However,due to a lack of suitable vibration sensing instruments,most studies on the propagation of seismic waves have been limited to shorelines n...All underwater drilling and blasting operations generate seismic waves.However,due to a lack of suitable vibration sensing instruments,most studies on the propagation of seismic waves have been limited to shorelines near construction areas or wharfs,whereas comparatively few studies have beerconducted on the larger seafloor itself.To address this gap,a seafloor vibration sensor system was developed and applied in this study that consists of an autonomous acquisition storage terminal,soft-ware platform,and hole-plugging device that was designed to record the blasting vibration intensities received through submarine rocks at a given measurement point.Additionally,dimensional analyses were used to derive a predictive equation for the strength of blast vibrations that considered the in fluence of the water depth.By combining reliable vibration data obtained using the sensor system in submarine rock and the developed predictive equation,it was determined that the water depth was ar important factor influencing the measured vibration strength.The results using the newly derivedequation were compared to those determined using the Sadowski equation,which is commonly used on land,and it was found that predictions using the derived equation were closer to the experimental values with an average error of less than 10%,representing a significant improvement.Based on these results the developed sensor system and preliminary theoretical basis was deemed suitable for studying the propagation behavior of submarine seismic waves generated by underwater drilling and blasting operations.展开更多
In this paper, numerical simulations of vortex-induced vibrations in a vertical top-tension riser with a length-to-diameter ratio of 500 using our in-house code viv-FOAM-SJTU are presented. The time-dependent hydrodyn...In this paper, numerical simulations of vortex-induced vibrations in a vertical top-tension riser with a length-to-diameter ratio of 500 using our in-house code viv-FOAM-SJTU are presented. The time-dependent hydrodynamic forces on two-dimensional strips are obtained by solving the Navier-Stokes equations, which are, in turn, integrated into a finite-element structural model to obtain the riser deflections. The riser is discretized into 80 elements with its two ends set as pinned and 20 strips are located equidistant along the risers. Flow and structure are coupled by hydrodynamic forces and structural displacements. In order to study the effects of the shear rate, of the current profiles on the vortex-induced vibrations in the riser, vibrations, with varying shear rates, in both the in-line and cross-flow directions, are simulated. In addition to the time domain analysis, spectral analysis was conducted in both the temporal and spatial domains. Multi-mode vibration characteristics were observed in the riser. The relationship between dominant vibration mode number and the shear rate of current profiles is discussed. In general, the overall vibrations in the riser pipe include contributions from several modes and each mode persists over a range of shear rates. Moreover, the results suggest that with a larger shear rate the position of the maximum in-line time-averaged displacement will move closer to the end where the largest velocity is located.展开更多
In this paper both numerical and experimental investigations have been carried out to suppress the vortex-induced vibration (VIV) of a circular cylinder in an electrically low-conducting fluid. The electromagnetic f...In this paper both numerical and experimental investigations have been carried out to suppress the vortex-induced vibration (VIV) of a circular cylinder in an electrically low-conducting fluid. The electromagnetic forces (Lorentz forces) in the azimuthal direction were generated through the mounted electrodes and magnets locally on the surface of the cylinder, which have been proved having an accelerating effect to the fluid on the surface of the cylinder. Results of computations are presented for synchronous vibration phenomenon of a cylinder at Re = 200, which are in good agreement with previous computational results. With the Lorentz forces loaded, the VIV of the cylinder has been suppressed successfully. Experimental results have also shown the same tendency and are in reasonable agreement with the numerical results.展开更多
Streamline box girders are widely applied in the design and construction of long-span bridges all over the world. In order to study the influence of modifications of aerodynamic configuration and accessory components ...Streamline box girders are widely applied in the design and construction of long-span bridges all over the world. In order to study the influence of modifications of aerodynamic configuration and accessory components on flutter and vortex-induced vibration (VIV), more than 60 cases were tested through a 1:50 scale section model. The test results indicates that the aerodynamic configuration and accessory components of streamline box girders can signifi- cantly affect the wind-induced vibration of bridge, which is in good agreement with the experience of past researchers. From the tests carried out, it is observed that if the horizontal angle of the inclined web of the streamline box girder is below 16°, the critical flutter wind speed of bridge will increase remarkably, and the VIV will diminish. The test results also show that the 15° inclined web can restrain the formation of vortex near the tail, and consequently improve the performance of aerodynamic stability of long-span bridges. Finally, a new streamline box girder with 15° inclined web was presented and strongly recommended in the aerodynamic configuration design of long-span bridges.展开更多
High-speed airflow in wind tunnel tests usually causes dramatic vibration of ejector structure,which may lead to fatigue and even destruction of the wind tunnel.Therefore,analyzing and solving the flow-induced vibrati...High-speed airflow in wind tunnel tests usually causes dramatic vibration of ejector structure,which may lead to fatigue and even destruction of the wind tunnel.Therefore,analyzing and solving the flow-induced vibration problem is a tough and indispensable part of the wind tunnel security design.In this paper,taking a kind of two-stage ejector as the study object,multiple numerical simulation methods are adopted in order to carry out research on the analysis technique of the flow-induced vibration characteristics of ejector structure.Firstly,the structural dynamics characteristic is analyzed by using the ejector structural dynamics numerical model,which is built on the basis of finite element method.Secondly,the complex flow phenomenon is explored applying numerical fluid-dynamics model of the inner flow field of the ejector,which is constructed on the basis of finite volume method.Finally,based on the two numerical models above,the vibration response of the ejector structure induced by the high-speed airflow is computed via the fluid-solid coupling technique.The comparison of the simulation results with the actual vibration test indicates that these numerical simulation methods can accurately figure out the rule of flow-induced vibration of ejectors.展开更多
The flow of the weak electrolyte solution can be controlled by Lorentz force achieved with the suitable magnetic and electric fields, and it has the advantages of vortex street suppression, drag reduction, lift enhanc...The flow of the weak electrolyte solution can be controlled by Lorentz force achieved with the suitable magnetic and electric fields, and it has the advantages of vortex street suppression, drag reduction, lift enhancement and oscillatory suppression for the flow over a bluff body. The electro-magnetic control of vortex-induced vibration (VIV) of a circular cylinder in the shear flow was investigated numerically in the exponential-polar coordinates attached on the moving cylinder for Re=150. With the effect of background vorticity, the vortex street of VIV cylinder was composed of two parallel rows with an opposite sign of the vortices which inclines toward the lower side and the strength of upper vortex is larger than that of lower vortex. The lift force vibrated periodically with the effect of vortex shedding and the mean value was negative due to the background vorticity. The Lorentz force for controlling the VIV cylinder was classified into the field Lorentz force and the wall Lorentz force. The field Lorentz force suppresses the lift oscillation, and in turn, suppresses the VIV, whereas the wall Lorentz force increases the lift.展开更多
A pipe model with a mass ratio(mass/displaced mass) of 4.30 was tested to investigate the vortex-induced vibrations of submarine pipeline spans near the seabed.The pipe model was designed as a bending stiffness-domi...A pipe model with a mass ratio(mass/displaced mass) of 4.30 was tested to investigate the vortex-induced vibrations of submarine pipeline spans near the seabed.The pipe model was designed as a bending stiffness-dominated beam.The gap ratios(gap to diameter ratio) at the pipe ends were 4.0,6.0,and 8.0.The flow velocity was systematically varied in the 0-16.71 nondimensional velocity range based on the first natural frequency.The mode transition between the first and the second mode as the flow velocity increases was investigated.At various transition flow velocities,the research indicates that the peak frequencies with respect to displacement are not identical along the pipe,nor the frequencies associated with the peak of the amplitude spectra for the first four modes as well.The mode transition is associated with a continuous change in the amplitude,but there's a jump in frequency,and a gradual process along the pipe length.展开更多
Photo-induced intramolecular electron transfer (PIET) and intramolecular vibrational relaxation (IVR) dynamics of the excited state of rhodamine 6G (Rh6G+) in DMSO are investigated by multiplex transient gratin...Photo-induced intramolecular electron transfer (PIET) and intramolecular vibrational relaxation (IVR) dynamics of the excited state of rhodamine 6G (Rh6G+) in DMSO are investigated by multiplex transient grating. Two major compo- nents are resolved in the dynamics of Rh6G+. The first component, with a lifetime τTPIET = 140 fs-260 fs, is attributed to PIET from the phenyl ring to the xanthene plane. The IVR process occurring in the range ZIVR = 3.3 ps-5.2 ps is much slower than the first component. The PIET and IVR processes occurring in the excited state of Rh6G+ are quantitatively determined, and a better understanding of the relationship between these processes is obtained.展开更多
This paper studies the application of mathematical models to analyze the vortex-induced vibrations of the tendons of a given TLP along the Indian coastline, by using an analytical approach, using MATLAB. The tendon is...This paper studies the application of mathematical models to analyze the vortex-induced vibrations of the tendons of a given TLP along the Indian coastline, by using an analytical approach, using MATLAB. The tendon is subjected to a steady current load, which causes vortex-shedding downstream, leading to cross-flow vibrations. The magnitude of the excitation(lift and drag coefficients) depends on the vortex-shedding frequency. The resulting vibration is studied for possible resonant behavior. The excitation force is quantified empirically, the added mass by potential flow hydrodynamics, and the vibration by normal mode summation method. Non-linear viscous damping of the water is considered. The non-linear oscillations are studied by the phase-plane method, investigating the limit-cycle oscillations. The stable/unstable regions of the dynamic behavior are demarcated. The modal contribution to the total deflection is studied to establish the possibility of resonance of one of the wet modes with the vortex-shedding frequency.展开更多
The ballast layer, filled with fine particles like blown sand, is one of the important problems of ballasted railway tracks in desert areas. Blown sand, as a contaminator of ballast layer, increases track stiffness an...The ballast layer, filled with fine particles like blown sand, is one of the important problems of ballasted railway tracks in desert areas. Blown sand, as a contaminator of ballast layer, increases track stiffness and may cause serious damage to sleepers, pads, rails, and vehicles. In this paper, the effects of increasing track stiffness due to windy sands in the ballast layer and the train induced vibrations due to this phenomenon were studied. Based on field studies in a desert area in Iran, a two-dimensional finite/infinite element model for a railway track with plane strain condition was analyzed using the software ABAQUS, and the track vibrations were examined by changing the values of stiffness of ballast layer. Vibrations caused by the load of train at different distances from the cross-section of track were inves- tigated, and the values of vertical vibration displacement, velocity, and acceleration were calculated. Results show that acceleration values of vertical vibration increase with the increasing of ballast layer stiffness caused by the filling of sand, while the vertical vibration velocity of track and the induced ground displacement decrease. The farther the distance from the source of vibration, the less the displacement, velocity, and acceleration. In addition, the methods for reducing train-induced vibrations were introduced.展开更多
The Lorentz force generated by electromagnetic field on the surface of the cylinder in the electrolyte solution may modify the structure of the flow boundary layer effectively. The transient control process of Lorentz...The Lorentz force generated by electromagnetic field on the surface of the cylinder in the electrolyte solution may modify the structure of the flow boundary layer effectively. The transient control process of Lorentz force is investigated experimentally for lift amplification and vibration suppression. The experiments are conducted in a rotating annular tank filled with a low-conducting electrolyte. A cylinder with an electro-magnetic actuator is placed into the electrolyte. The lift force of cylinder is measured using the strain gages attached to a fixed beam, and the flow fields are visualized by the dye markers. The results show that the upper vortex on the cylinder is suppressed, and the wake becomes a line and leans to the lower side under the action of upside Lorentz force while the lower vortex on the cylinder is suppressed and limited in a small region. Therefore, the value of lift increases with the variation of flow field. However, the vortexes on the cylinder are suppressed fully under the action of symmetrical Lorentz force which leads to the suppression of lift oscillation and then the vibration of cylinder are suppressed fully.展开更多
A finite element vibration model of a multiple wheel-rail system which consists of four wheels, one rail, and a series of sleepers is established to address the problem of rail corrugation in high-speed tracks. In the...A finite element vibration model of a multiple wheel-rail system which consists of four wheels, one rail, and a series of sleepers is established to address the problem of rail corrugation in high-speed tracks. In the model, the creep forces between the wheels and rail are considered to be saturated and equal to the normal contact forces times the friction coefficient. The oscillation of the rail is coupled with that of wheels in the action of the saturated creep forces. When the coupling is strong, self- excited oscillation of the wheel-rail system occurs. The self-excited vibration propensity of the model is analyzed using the complex eigenvalue method. Results show that there are strong propensities of unstable self-excited vibrations whose frequencies are less than 1,200 Hz under some conditions. Preventing wheels from slipping on rails is an effective method for suppressing rail corrugation in high-speed tracks.展开更多
To study the wind vibration response of power transmission tower, the lead viscoelastic dampers (LVDs) were applied to a cup tower. With time history analysis method, the displacement, velocity, acceleration and for...To study the wind vibration response of power transmission tower, the lead viscoelastic dampers (LVDs) were applied to a cup tower. With time history analysis method, the displacement, velocity, acceleration and force response of the tower was calculated and analyzed. The results show that the control effect of lead viscoelastic dampers is very good, and the damping ratio can reach 20% or more when they are applied to the tower head.展开更多
文摘Stay cables with various surface profiles were tested in wind tunnel. Dimples and helical fillets were applied to mitigate the rain- wind induced vibration. The rain-wind excited responses of the cable with smooth surface were larger than those of the cables with dimples and helical fillets. At high Reynolds number, the drag coefficients of cables with dimples and helical fillets are much larger than those of smooth surface cable.
文摘All underwater drilling and blasting operations generate seismic waves.However,due to a lack of suitable vibration sensing instruments,most studies on the propagation of seismic waves have been limited to shorelines near construction areas or wharfs,whereas comparatively few studies have beerconducted on the larger seafloor itself.To address this gap,a seafloor vibration sensor system was developed and applied in this study that consists of an autonomous acquisition storage terminal,soft-ware platform,and hole-plugging device that was designed to record the blasting vibration intensities received through submarine rocks at a given measurement point.Additionally,dimensional analyses were used to derive a predictive equation for the strength of blast vibrations that considered the in fluence of the water depth.By combining reliable vibration data obtained using the sensor system in submarine rock and the developed predictive equation,it was determined that the water depth was ar important factor influencing the measured vibration strength.The results using the newly derivedequation were compared to those determined using the Sadowski equation,which is commonly used on land,and it was found that predictions using the derived equation were closer to the experimental values with an average error of less than 10%,representing a significant improvement.Based on these results the developed sensor system and preliminary theoretical basis was deemed suitable for studying the propagation behavior of submarine seismic waves generated by underwater drilling and blasting operations.
基金Supported by the National Natural Science Foundation of China(51379125,51490675,11432009,51579145)Chang Jiang Scholars Program(T2014099)+3 种基金Shanghai Excellent Academic Leaders Program(17XD1402300)Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning(2013022)Innovative Special Project of Numerical Tank of Ministry of Industry and Information Technology of China(2016-23/09)Lloyd’s Register Foundation for Doctoral Student
文摘In this paper, numerical simulations of vortex-induced vibrations in a vertical top-tension riser with a length-to-diameter ratio of 500 using our in-house code viv-FOAM-SJTU are presented. The time-dependent hydrodynamic forces on two-dimensional strips are obtained by solving the Navier-Stokes equations, which are, in turn, integrated into a finite-element structural model to obtain the riser deflections. The riser is discretized into 80 elements with its two ends set as pinned and 20 strips are located equidistant along the risers. Flow and structure are coupled by hydrodynamic forces and structural displacements. In order to study the effects of the shear rate, of the current profiles on the vortex-induced vibrations in the riser, vibrations, with varying shear rates, in both the in-line and cross-flow directions, are simulated. In addition to the time domain analysis, spectral analysis was conducted in both the temporal and spatial domains. Multi-mode vibration characteristics were observed in the riser. The relationship between dominant vibration mode number and the shear rate of current profiles is discussed. In general, the overall vibrations in the riser pipe include contributions from several modes and each mode persists over a range of shear rates. Moreover, the results suggest that with a larger shear rate the position of the maximum in-line time-averaged displacement will move closer to the end where the largest velocity is located.
文摘In this paper both numerical and experimental investigations have been carried out to suppress the vortex-induced vibration (VIV) of a circular cylinder in an electrically low-conducting fluid. The electromagnetic forces (Lorentz forces) in the azimuthal direction were generated through the mounted electrodes and magnets locally on the surface of the cylinder, which have been proved having an accelerating effect to the fluid on the surface of the cylinder. Results of computations are presented for synchronous vibration phenomenon of a cylinder at Re = 200, which are in good agreement with previous computational results. With the Lorentz forces loaded, the VIV of the cylinder has been suppressed successfully. Experimental results have also shown the same tendency and are in reasonable agreement with the numerical results.
文摘Streamline box girders are widely applied in the design and construction of long-span bridges all over the world. In order to study the influence of modifications of aerodynamic configuration and accessory components on flutter and vortex-induced vibration (VIV), more than 60 cases were tested through a 1:50 scale section model. The test results indicates that the aerodynamic configuration and accessory components of streamline box girders can signifi- cantly affect the wind-induced vibration of bridge, which is in good agreement with the experience of past researchers. From the tests carried out, it is observed that if the horizontal angle of the inclined web of the streamline box girder is below 16°, the critical flutter wind speed of bridge will increase remarkably, and the VIV will diminish. The test results also show that the 15° inclined web can restrain the formation of vortex near the tail, and consequently improve the performance of aerodynamic stability of long-span bridges. Finally, a new streamline box girder with 15° inclined web was presented and strongly recommended in the aerodynamic configuration design of long-span bridges.
基金supported in part by the National Natural Science Foundation of China (Nos.51806234, 51805530)
文摘High-speed airflow in wind tunnel tests usually causes dramatic vibration of ejector structure,which may lead to fatigue and even destruction of the wind tunnel.Therefore,analyzing and solving the flow-induced vibration problem is a tough and indispensable part of the wind tunnel security design.In this paper,taking a kind of two-stage ejector as the study object,multiple numerical simulation methods are adopted in order to carry out research on the analysis technique of the flow-induced vibration characteristics of ejector structure.Firstly,the structural dynamics characteristic is analyzed by using the ejector structural dynamics numerical model,which is built on the basis of finite element method.Secondly,the complex flow phenomenon is explored applying numerical fluid-dynamics model of the inner flow field of the ejector,which is constructed on the basis of finite volume method.Finally,based on the two numerical models above,the vibration response of the ejector structure induced by the high-speed airflow is computed via the fluid-solid coupling technique.The comparison of the simulation results with the actual vibration test indicates that these numerical simulation methods can accurately figure out the rule of flow-induced vibration of ejectors.
基金Sponsored by the National Nature Science Foundation of China (11202102,11172140)
文摘The flow of the weak electrolyte solution can be controlled by Lorentz force achieved with the suitable magnetic and electric fields, and it has the advantages of vortex street suppression, drag reduction, lift enhancement and oscillatory suppression for the flow over a bluff body. The electro-magnetic control of vortex-induced vibration (VIV) of a circular cylinder in the shear flow was investigated numerically in the exponential-polar coordinates attached on the moving cylinder for Re=150. With the effect of background vorticity, the vortex street of VIV cylinder was composed of two parallel rows with an opposite sign of the vortices which inclines toward the lower side and the strength of upper vortex is larger than that of lower vortex. The lift force vibrated periodically with the effect of vortex shedding and the mean value was negative due to the background vorticity. The Lorentz force for controlling the VIV cylinder was classified into the field Lorentz force and the wall Lorentz force. The field Lorentz force suppresses the lift oscillation, and in turn, suppresses the VIV, whereas the wall Lorentz force increases the lift.
基金Supported by the National Natural Science Foundation of China(No.41176072) the Scientific Research Fund of Hunan Provincial Education Department(No.12C0030)+1 种基金 the Program for Hu’nan Province Key Laboratory of Water,Sediment Sciences and Flood Hazard Prevention(No.2012SS07) the National Natural Science Foundation for Youth of China(No.51109018)
文摘A pipe model with a mass ratio(mass/displaced mass) of 4.30 was tested to investigate the vortex-induced vibrations of submarine pipeline spans near the seabed.The pipe model was designed as a bending stiffness-dominated beam.The gap ratios(gap to diameter ratio) at the pipe ends were 4.0,6.0,and 8.0.The flow velocity was systematically varied in the 0-16.71 nondimensional velocity range based on the first natural frequency.The mode transition between the first and the second mode as the flow velocity increases was investigated.At various transition flow velocities,the research indicates that the peak frequencies with respect to displacement are not identical along the pipe,nor the frequencies associated with the peak of the amplitude spectra for the first four modes as well.The mode transition is associated with a continuous change in the amplitude,but there's a jump in frequency,and a gradual process along the pipe length.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.21003033 and 21203047)the Guangxi Provincial Natural Science Foundation,China(Grant Nos.2012GXNSFBA053012 and 2014GXNSFAA118019)the Research Foundation of Education Bureau of Guangxi Zhuang Autonomous Region,China(Grant No.ZD2014127)
文摘Photo-induced intramolecular electron transfer (PIET) and intramolecular vibrational relaxation (IVR) dynamics of the excited state of rhodamine 6G (Rh6G+) in DMSO are investigated by multiplex transient grating. Two major compo- nents are resolved in the dynamics of Rh6G+. The first component, with a lifetime τTPIET = 140 fs-260 fs, is attributed to PIET from the phenyl ring to the xanthene plane. The IVR process occurring in the range ZIVR = 3.3 ps-5.2 ps is much slower than the first component. The PIET and IVR processes occurring in the excited state of Rh6G+ are quantitatively determined, and a better understanding of the relationship between these processes is obtained.
文摘This paper studies the application of mathematical models to analyze the vortex-induced vibrations of the tendons of a given TLP along the Indian coastline, by using an analytical approach, using MATLAB. The tendon is subjected to a steady current load, which causes vortex-shedding downstream, leading to cross-flow vibrations. The magnitude of the excitation(lift and drag coefficients) depends on the vortex-shedding frequency. The resulting vibration is studied for possible resonant behavior. The excitation force is quantified empirically, the added mass by potential flow hydrodynamics, and the vibration by normal mode summation method. Non-linear viscous damping of the water is considered. The non-linear oscillations are studied by the phase-plane method, investigating the limit-cycle oscillations. The stable/unstable regions of the dynamic behavior are demarcated. The modal contribution to the total deflection is studied to establish the possibility of resonance of one of the wet modes with the vortex-shedding frequency.
文摘The ballast layer, filled with fine particles like blown sand, is one of the important problems of ballasted railway tracks in desert areas. Blown sand, as a contaminator of ballast layer, increases track stiffness and may cause serious damage to sleepers, pads, rails, and vehicles. In this paper, the effects of increasing track stiffness due to windy sands in the ballast layer and the train induced vibrations due to this phenomenon were studied. Based on field studies in a desert area in Iran, a two-dimensional finite/infinite element model for a railway track with plane strain condition was analyzed using the software ABAQUS, and the track vibrations were examined by changing the values of stiffness of ballast layer. Vibrations caused by the load of train at different distances from the cross-section of track were inves- tigated, and the values of vertical vibration displacement, velocity, and acceleration were calculated. Results show that acceleration values of vertical vibration increase with the increasing of ballast layer stiffness caused by the filling of sand, while the vertical vibration velocity of track and the induced ground displacement decrease. The farther the distance from the source of vibration, the less the displacement, velocity, and acceleration. In addition, the methods for reducing train-induced vibrations were introduced.
基金Sponsored by the National Nature Science Foundation of China ( 11202102)pecialized Research Fund for Doctoral Program of High Educatio n ( 20123219120050)
文摘The Lorentz force generated by electromagnetic field on the surface of the cylinder in the electrolyte solution may modify the structure of the flow boundary layer effectively. The transient control process of Lorentz force is investigated experimentally for lift amplification and vibration suppression. The experiments are conducted in a rotating annular tank filled with a low-conducting electrolyte. A cylinder with an electro-magnetic actuator is placed into the electrolyte. The lift force of cylinder is measured using the strain gages attached to a fixed beam, and the flow fields are visualized by the dye markers. The results show that the upper vortex on the cylinder is suppressed, and the wake becomes a line and leans to the lower side under the action of upside Lorentz force while the lower vortex on the cylinder is suppressed and limited in a small region. Therefore, the value of lift increases with the variation of flow field. However, the vortexes on the cylinder are suppressed fully under the action of symmetrical Lorentz force which leads to the suppression of lift oscillation and then the vibration of cylinder are suppressed fully.
基金supported by the National Natural Science Foundation of China(No.51275429)
文摘A finite element vibration model of a multiple wheel-rail system which consists of four wheels, one rail, and a series of sleepers is established to address the problem of rail corrugation in high-speed tracks. In the model, the creep forces between the wheels and rail are considered to be saturated and equal to the normal contact forces times the friction coefficient. The oscillation of the rail is coupled with that of wheels in the action of the saturated creep forces. When the coupling is strong, self- excited oscillation of the wheel-rail system occurs. The self-excited vibration propensity of the model is analyzed using the complex eigenvalue method. Results show that there are strong propensities of unstable self-excited vibrations whose frequencies are less than 1,200 Hz under some conditions. Preventing wheels from slipping on rails is an effective method for suppressing rail corrugation in high-speed tracks.
基金Research Fund of Chinese State Grid Company (No.SGKJ[2007]413)
文摘To study the wind vibration response of power transmission tower, the lead viscoelastic dampers (LVDs) were applied to a cup tower. With time history analysis method, the displacement, velocity, acceleration and force response of the tower was calculated and analyzed. The results show that the control effect of lead viscoelastic dampers is very good, and the damping ratio can reach 20% or more when they are applied to the tower head.