期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于改进MPC与RBF-PID的智能车轨迹跟踪控制 被引量:1
1
作者 李臣旭 江浩斌 洪阳珂 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第5期1290-1301,共12页
为提升智能汽车轨迹跟踪控制的稳定性和精度,提出一种基于时域参数自适应MPC与RBF-PID的轨迹跟踪控制方法.首先搭建车辆横纵向动力学模型;其次分析控制时域与预测时域对跟踪精度的影响,设计时域参数自适应MPC横向控制器并进行仿真验证;... 为提升智能汽车轨迹跟踪控制的稳定性和精度,提出一种基于时域参数自适应MPC与RBF-PID的轨迹跟踪控制方法.首先搭建车辆横纵向动力学模型;其次分析控制时域与预测时域对跟踪精度的影响,设计时域参数自适应MPC横向控制器并进行仿真验证;然后基于径向基函数(RBF)神经网络整定PID控制参数,设计分层式纵向控制器,并设计折线速度曲线与PID算法进行对比;最后以车速为耦合点构建智能汽车横纵向综合控制系统,并在蛇形工况下对横纵向综合控制系统进行仿真实验.结果表明,所设计的横向控制器能保证低速时的跟踪精度和高速时的车辆稳定性,纵向控制器可有效提高速度跟踪精度,横纵向综合控制系统能实现车辆在变车速工况下对轨迹的精准跟踪,同时保证良好的行驶稳定性与舒适性. 展开更多
关键词 时域参数自适应 MPC rbf-pid 横纵向综合控制 轨迹跟踪
在线阅读 下载PDF
基于RBF网络的微分先行PID控制器 被引量:5
2
作者 张静 《兵工自动化》 2007年第9期60-61,共2页
将微分先行PID控制算法和径向基函数(RBF)神经网络结合,提出基于RBF神经网络的微分先行PID控制器。其微分先行PID控制器直接对被控对象进行闭环控制,实现参数在线自调整。RBF结构神经网络则根据系统的运行状态,利用神经网络的自学习自... 将微分先行PID控制算法和径向基函数(RBF)神经网络结合,提出基于RBF神经网络的微分先行PID控制器。其微分先行PID控制器直接对被控对象进行闭环控制,实现参数在线自调整。RBF结构神经网络则根据系统的运行状态,利用神经网络的自学习自适应能力调节PID控制器参数的在线自整定,达到误差性能指标最优化。Matlab仿真表明,该控制方案不仅跟踪性能良好,而且抗干扰性较强,鲁棒性较好。 展开更多
关键词 rbf神经网络 微分先行 pid控制 参数自整定
在线阅读 下载PDF
基于RBF神经网络参数自整定的AUV深度控制 被引量:7
3
作者 杜度 《水下无人系统学报》 北大核心 2019年第3期284-289,共6页
为了保证自主水下航行器(AUV)能够精确潜入固定深度海域,AUV垂平面控制技术非常重要。在基于比例-积分-微分(PID)控制设计控制器的过程中,为保证控制器能够较好地控制AUV跟踪指定轨迹,需要对PID参数进行调整,但参数设定需要反复尝试,不... 为了保证自主水下航行器(AUV)能够精确潜入固定深度海域,AUV垂平面控制技术非常重要。在基于比例-积分-微分(PID)控制设计控制器的过程中,为保证控制器能够较好地控制AUV跟踪指定轨迹,需要对PID参数进行调整,但参数设定需要反复尝试,不仅耗费大量时间,而且不能保障其最优效果。为解决这一问题,提出了一种基于径向基函数(RBF)神经网络的参数自整定PID控制方法。首先建立AUV垂平面运动模型,然后设计RBF神经网络结构,基于梯度下降方法给出了RBF参数以及PID参数的迭代公式,并设计离散式PID控制器,最后通过数值仿真验证了所提方法的有效性。仿真结果说明,AUV可以在较短时间内达到指定深度,且PID各参数均能完成自整定。 展开更多
关键词 自主水下航行器 深度控制 径向基函数神经网络 比例-积分-微分控制 自整定
在线阅读 下载PDF
改进的神经网络PID在空调温度控制中的应用 被引量:1
4
作者 费春国 吴婷娜 《中国民航大学学报》 CAS 2022年第1期34-39,共6页
为提高候机楼中央空调温度控制水平,针对候机楼中央空调系统具有时滞性、扰动因素较多等特点,提出了一种基于改进天牛须搜索(IBAS,improved beetle antennae search)算法的模糊径向基函数(RBF,radial basis function)神经网络(PID,propo... 为提高候机楼中央空调温度控制水平,针对候机楼中央空调系统具有时滞性、扰动因素较多等特点,提出了一种基于改进天牛须搜索(IBAS,improved beetle antennae search)算法的模糊径向基函数(RBF,radial basis function)神经网络(PID,proportion integration differentiation)控制方法,建立了空调区域温度控制模型,通过模糊RBF神经网络实现PID参数在线整定,解决系统非线性、时变的问题。同时由于神经网络参数存在难以选取问题,提出利用天牛须搜索(BAS,beetle antennae search)算法优化模糊RBF神经网络参数的方法,并引入莱维飞行机制和变步长策略对BAS算法进行改进,提高其跳出局部最优的能力和稳定性。仿真结果表明,采用IBAS算法优化的模糊RBF神经网络PID控制方法有效提高了系统的鲁棒性和自适应能力,对候机楼中央空调系统具有良好的控制效果。 展开更多
关键词 候机楼中央空调系统 温度控制 IBAS(improved beetle antennae search)算法 模糊rbf(radial basis func-tion)神经网络 pid(proportion integration differentiation)参数整定
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部