期刊文献+
共找到1,748篇文章
< 1 2 88 >
每页显示 20 50 100
Synchronization of chaos using radial basis functions neural networks 被引量:2
1
作者 Ren Haipeng Liu Ding 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第1期83-88,100,共7页
The Radial Basis Functions Neural Network (RBFNN) is used to establish the model of a response system through the input and output data of the system. The synchronization between a drive system and the response syst... The Radial Basis Functions Neural Network (RBFNN) is used to establish the model of a response system through the input and output data of the system. The synchronization between a drive system and the response system can be implemented by employing the RBFNN model and state feedback control. In this case, the exact mathematical model, which is the precondition for the conventional method, is unnecessary for implementing synchronization. The effect of the model error is investigated and a corresponding theorem is developed. The effect of the parameter perturbations and the measurement noise is investigated through simulations. The simulation results under different conditions show the effectiveness of the method. 展开更多
关键词 Chaos synchronization radial basis function neural networks Model error Parameter perturbation Measurement noise.
在线阅读 下载PDF
Adaptive integral dynamic surface control based on fully tuned radial basis function neural network 被引量:2
2
作者 Li Zhou Shumin Fei Changsheng Jiang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第6期1072-1078,共7页
An adaptive integral dynamic surface control approach based on fully tuned radial basis function neural network (FTRBFNN) is presented for a general class of strict-feedback nonlinear systems,which may possess a wid... An adaptive integral dynamic surface control approach based on fully tuned radial basis function neural network (FTRBFNN) is presented for a general class of strict-feedback nonlinear systems,which may possess a wide class of uncertainties that are not linearly parameterized and do not have any prior knowledge of the bounding functions.FTRBFNN is employed to approximate the uncertainty online,and a systematic framework for adaptive controller design is given by dynamic surface control. The control algorithm has two outstanding features,namely,the neural network regulates the weights,width and center of Gaussian function simultaneously,which ensures the control system has perfect ability of restraining different unknown uncertainties and the integral term of tracking error introduced in the control law can eliminate the static error of the closed loop system effectively. As a result,high control precision can be achieved.All signals in the closed loop system can be guaranteed bounded by Lyapunov approach.Finally,simulation results demonstrate the validity of the control approach. 展开更多
关键词 adaptive control integral dynamic surface control fully tuned radial basis function neural network.
在线阅读 下载PDF
DETERMINING THE STRUCTURES AND PARAMETERS OF RADIAL BASIS FUNCTION NEURAL NETWORKS USING IMPROVED GENETIC ALGORITHMS 被引量:1
3
作者 Meiqin Liu Jida Chen 《Journal of Central South University》 SCIE EI CAS 1998年第2期68-73,共6页
The method of determining the structures and parameters of radial basis function neural networks(RBFNNs) using improved genetic algorithms is proposed. Akaike′s information criterion (AIC) with generalization error t... The method of determining the structures and parameters of radial basis function neural networks(RBFNNs) using improved genetic algorithms is proposed. Akaike′s information criterion (AIC) with generalization error term is used as the best criterion of optimizing the structures and parameters of networks. It is shown from the simulation results that the method not only improves the approximation and generalization capability of RBFNNs ,but also obtain the optimal or suboptimal structures of networks. 展开更多
关键词 radial basis function neural network GENETIC algorithms Akaike′s information CRITERION OVERFITTING
在线阅读 下载PDF
Research on motion compensation method based on neural network of radial basis function
4
作者 Zuo Yunbo 《仪器仪表学报》 EI CAS CSCD 北大核心 2014年第S2期215-218,共4页
The machining precision not only depends on accurate mechanical structure but also depends on motion compensation method. If manufacturing precision of mechanical structure cannot be improved, the motion compensation ... The machining precision not only depends on accurate mechanical structure but also depends on motion compensation method. If manufacturing precision of mechanical structure cannot be improved, the motion compensation is a reasonable way to improve motion precision. A motion compensation method based on neural network of radial basis function(RBF) was presented in this paper. It utilized the infinite approximation advantage of RBF neural network to fit the motion error curve. The best hidden neural quantity was optimized by training the motion error data and calculating the total sum of squares. The best curve coefficient matrix was got and used to calculate motion compensation values. The experiments showed that the motion errors could be reduced obviously by utilizing the method in this paper. 展开更多
关键词 MOTION COMPENSATION neural network radial basis function
在线阅读 下载PDF
An Adaptive Identification and Control SchemeUsing Radial Basis Function Networks 被引量:2
5
作者 Chen Zengqiang He Jiangfeng Yuan Zhuzhi (Department of Computer and System Science, Nankai University, Tianjin 300071, P. R. China)(Received July 12, 1998) 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1999年第1期54-61,共8页
In this paper, adaptive identification and control of nonlinear dynamical systems are investigated using radial basis function networks (RBF). Firstly, a novel approach to train the RBF is introduced, which employs an... In this paper, adaptive identification and control of nonlinear dynamical systems are investigated using radial basis function networks (RBF). Firstly, a novel approach to train the RBF is introduced, which employs an adaptive fuzzy generalized learning vector quantization (AFGLVQ) technique and recursive least squares algorithm with variable forgetting factor (VRLS). The AFGLVQ adjusts the centers of the RBF while the VRLS updates the connection weights of the network. The identification algorithm has the properties of rapid convergence and persistent adaptability that make it suitable for real-time control. Secondly, on the basis of the one-step ahead RBF predictor, the control law is optimized iteratively through a numerical stable Davidon's least squares-based (SDLS) minimization approach. Four nonlinear examples are simulated to demonstrate the effectiveness of the identification and control algorithms. 展开更多
关键词 neural networks Adaptive control Nonlinear control radial basis function networks Recursive least squares.
在线阅读 下载PDF
基于GRU-RBFNN车速预测的A-ECMS能量管理策略
6
作者 李昕光 王文超 元佳宇 《计算机应用与软件》 北大核心 2025年第3期34-40,共7页
为进一步提高混合动力汽车的燃油经济性,提出一种基于车速预测的自适应等效燃油消耗最小策略(Adaptive Equivalent Consumption Minimization Strategy,A-ECMS)。应用VISSIM软件建立实地微观交通仿真模型并获取交通信息,基于PyTorch框... 为进一步提高混合动力汽车的燃油经济性,提出一种基于车速预测的自适应等效燃油消耗最小策略(Adaptive Equivalent Consumption Minimization Strategy,A-ECMS)。应用VISSIM软件建立实地微观交通仿真模型并获取交通信息,基于PyTorch框架搭建考虑时空特征的门控循环单元-径向基神经网络预测模型。在MATLAB/Simulink/Stateflow中建立混合动力汽车动力学模型,对基于车速预测的A-ECMS与固定等效燃油消耗最小策略(F-ECMS)进行对比研究,仿真结果表明,A-ECMS相较于F-ECMS,SOC波动更小,汽车燃油经济性提升8.97%。 展开更多
关键词 门控循环单元 径向基神经网络 车速预测 并联式混合动力汽车 等效燃油消耗最小策略
在线阅读 下载PDF
Global approximation based adaptive RBF neural network control for supercavitating vehicles 被引量:11
7
作者 LI Yang LIU Mingyong +1 位作者 ZHANG Xiaojian PENG Xingguang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第4期797-804,共8页
A global approximation based adaptive radial basis function(RBF) neural network control strategy is proposed for the trajectory tracking control of supercavitating vehicles(SV).A nominal model is built firstly wit... A global approximation based adaptive radial basis function(RBF) neural network control strategy is proposed for the trajectory tracking control of supercavitating vehicles(SV).A nominal model is built firstly with the unknown disturbance.Next, the control scheme is established consisting of a computed torque controller(CTC) for the practical vehicle and an RBF neural network controller to estimate model error between the practical vehicle and the nominal model. The network weights are adapted by employing a Lyapunov-based design. Then it is shown by the Lyapunov theory that the trajectory tracking errors asymptotically converge to a small neighborhood of zero. The control performance of the proposed controller is illustrated by simulation. 展开更多
关键词 radial basis function (RBF) neural network computedtorque controller (CTC) adaptive control supercavitating vehicle(SV)
在线阅读 下载PDF
Trajectory linearization control of an aerospace vehicle based on RBF neural network 被引量:6
8
作者 Xue Yali Jiang Changsheng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第4期799-805,共7页
An enhanced trajectory linearization control (TLC) structure based on radial basis function neural network (RBFNN) and its application on an aerospace vehicle (ASV) flight control system are presensted. The infl... An enhanced trajectory linearization control (TLC) structure based on radial basis function neural network (RBFNN) and its application on an aerospace vehicle (ASV) flight control system are presensted. The influence of unknown disturbances and uncertainties is reduced by RBFNN thanks to its approaching ability, and a robustifying itera is used to overcome the approximate error of RBFNN. The parameters adaptive adjusting laws are designed on the Lyapunov theory. The uniform ultimate boundedness of all signals of the composite closed-loop system is proved based on Lyapunov theory. Finally, the flight control system of an ASV is designed based on the proposed method. Simulation results demonstrate the effectiveness and robustness of the designed approach. 展开更多
关键词 adaptive control trajectory linearization control radial basis function neural network aerospace vehicle.
在线阅读 下载PDF
Application of neural networks for permanent magnet synchronous motor direct torque control 被引量:6
9
作者 Zhang Chunmei Liu Heping +1 位作者 Chen Shujin Wang Fangjun 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第3期555-561,共7页
Neural networks require a lot of training to understand the model of a plant or a process. Issues such as learning speed, stability, and weight convergence remain as areas of research and comparison of many training a... Neural networks require a lot of training to understand the model of a plant or a process. Issues such as learning speed, stability, and weight convergence remain as areas of research and comparison of many training algorithms. The application of neural networks to control interior permanent magnet synchronous motor using direct torque control (DTC) is discussed. A neural network is used to emulate the state selector of the DTC. The neural networks used are the back-propagation and radial basis function. To reduce the training patterns and increase the execution speed of the training process, the inputs of switching table are converted to digital signals, i.e., one bit represent the flux error, one bit the torque error, and three bits the region of stator flux. Computer simulations of the motor and neural-network system using the two approaches are presented and compared. Discussions about the back-propagation and radial basis function as the most promising training techniques are presented, giving its advantages and disadvantages. The system using back-propagation and radial basis function networks controller has quick parallel speed and high torque response. 展开更多
关键词 interior permanent magnet synchronous motor radial basis function neural network torque control direct torque control.
在线阅读 下载PDF
Target maneuver trajectory prediction based on RBF neural network optimized by hybrid algorithm 被引量:12
10
作者 XI Zhifei XU An +2 位作者 KOU Yingxin LI Zhanwu YANG Aiwu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第2期498-516,共19页
Target maneuver trajectory prediction plays an important role in air combat situation awareness and threat assessment.To solve the problem of low prediction accuracy of the traditional prediction method and model,a ta... Target maneuver trajectory prediction plays an important role in air combat situation awareness and threat assessment.To solve the problem of low prediction accuracy of the traditional prediction method and model,a target maneuver trajectory prediction model based on phase space reconstruction-radial basis function(PSR-RBF)neural network is established by combining the characteristics of trajectory with time continuity.In order to further improve the prediction performance of the model,the rival penalized competitive learning(RPCL)algorithm is introduced to determine the structure of RBF,the Levenberg-Marquardt(LM)and the hybrid algorithm of the improved particle swarm optimization(IPSO)algorithm and the k-means are introduced to optimize the parameter of RBF,and a PSR-RBF neural network is constructed.An independent method of 3D coordinates of the target maneuver trajectory is proposed,and the target manuver trajectory sample data is constructed by using the training data selected in the air combat maneuver instrument(ACMI),and the maneuver trajectory prediction model based on the PSR-RBF neural network is established.In order to verify the precision and real-time performance of the trajectory prediction model,the simulation experiment of target maneuver trajectory is performed.The results show that the prediction performance of the independent method is better,and the accuracy of the PSR-RBF prediction model proposed is better.The prediction confirms the effectiveness and applicability of the proposed method and model. 展开更多
关键词 trajectory prediction K-MEANS improved particle swarm optimization(IPSO) Levenberg-Marquardt(LM) radial basis function(RBF)neural network
在线阅读 下载PDF
高速列车纵向动力学建模与自适应RBFNN控制 被引量:3
11
作者 付雅婷 胡东亮 +1 位作者 杨辉 欧阳超明 《铁道学报》 EI CAS CSCD 北大核心 2024年第1期42-52,共11页
高速列车由多节车厢链接而成的结构特性导致其高速运行在变路况线路条件下难以有效地对其进行优化控制。针对上述问题,提出一种高速列车纵向动力学模型与径向基函数神经网络(RBFNN)控制策略。考虑列车车钩力和复杂线路条件,分析整列车... 高速列车由多节车厢链接而成的结构特性导致其高速运行在变路况线路条件下难以有效地对其进行优化控制。针对上述问题,提出一种高速列车纵向动力学模型与径向基函数神经网络(RBFNN)控制策略。考虑列车车钩力和复杂线路条件,分析整列车前后的不同受力情况,建立列车纵向动力学模型。针对该模型无外加干扰时设计一种理想反馈控制律,引入RBFNN对理想控制输出进行拟合,在考虑干扰项影响的情况下,通过设计参数估计自适应律代替神经网络权值的调整,并对其进行Lyapunov稳定性证明。采用京石武高铁北京西—郑州东段的CRH380B型高速列车真实线路运行数据进行仿真模拟,并在相同条件下与反演滑模(BSSM)控制器的仿真结果进行对比。仿真结果表明所提控制器更能有效应对复杂路况变化和外界干扰,对高速列车具有更好的控制效果,改善其运行的平稳性及高效性。 展开更多
关键词 高速列车 纵向动力学模型 径向基函数神经网络 自适应算法 LYAPUNOV理论
在线阅读 下载PDF
Modeling and optimum operating conditions for FCCU using artificial neural network 被引量:6
12
作者 李全善 李大字 曹柳林 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第4期1342-1349,共8页
A self-organizing radial basis function(RBF) neural network(SODM-RBFNN) was presented for predicting the production yields and operating optimization. Gradient descent algorithm was used to optimize the widths of RBF ... A self-organizing radial basis function(RBF) neural network(SODM-RBFNN) was presented for predicting the production yields and operating optimization. Gradient descent algorithm was used to optimize the widths of RBF neural network with the initial parameters obtained by k-means learning method. During the iteration procedure of the algorithm, the centers of the neural network were optimized by using the gradient method with these optimized width values. The computational efficiency was maintained by using the multi-threading technique. SODM-RBFNN consists of two RBF neural network models: one is a running model used to predict the product yields of fluid catalytic cracking unit(FCCU) and optimize its operating parameters; the other is a learning model applied to construct or correct a RBF neural network. The running model can be updated by the learning model according to an accuracy criterion. The simulation results of a five-lump kinetic model exhibit its accuracy and generalization capabilities, and practical application in FCCU illustrates its effectiveness. 展开更多
关键词 radial basis function(RBF) neural network self-organizing gradient descent double-model fluid catalytic cracking unit(FCCU)
在线阅读 下载PDF
Neural network modeling and control of proton exchange membrane fuel cell 被引量:1
13
作者 陈跃华 曹广益 朱新坚 《Journal of Central South University of Technology》 EI 2007年第1期84-87,共4页
A neural network model and fuzzy neural network controller was designed to control the inner impedance of a proton exchange membrane fuel cell (PEMFC) stack. A radial basis function (RBF) neural network model was trai... A neural network model and fuzzy neural network controller was designed to control the inner impedance of a proton exchange membrane fuel cell (PEMFC) stack. A radial basis function (RBF) neural network model was trained by the input-output data of impedance. A fuzzy neural network controller was designed to control the impedance response. The RBF neural network model was used to test the fuzzy neural network controller. The results show that the RBF model output can imitate actual output well, the maximal error is not beyond 20 m-, the training time is about 1 s by using 20 neurons, and the mean squared errors is 141.9 m-2. The impedance of the PEMFC stack is controlled within the optimum range when the load changes, and the adjustive time is about 3 min. 展开更多
关键词 proton exchange membrane fuel cell radial basis function neural network fuzzy neural network
在线阅读 下载PDF
基于RBFNN的双星协同仅测角定轨方法 被引量:2
14
作者 龚柏春 刘一澎 +1 位作者 马艳红 任默 《中国惯性技术学报》 EI CSCD 北大核心 2024年第5期449-456,共8页
针对空间非合作目标空间态势感知任务中弱可观测无源定轨状态的快速捕获问题,提出了一种基于径向基函数神经网络(RBFNN)的双星协同稀疏无源测角定轨方法。首先,在限制性三体问题的假设下建立了考虑地球非球形J2项摄动的轨道动力学模型... 针对空间非合作目标空间态势感知任务中弱可观测无源定轨状态的快速捕获问题,提出了一种基于径向基函数神经网络(RBFNN)的双星协同稀疏无源测角定轨方法。首先,在限制性三体问题的假设下建立了考虑地球非球形J2项摄动的轨道动力学模型和赤经赤纬测量模型。然后,构建了基于RBFNN的双星协同仅测角定轨框架,设计了训练数据集生成器、数据预处理方法和RBFNN结构。最后,利用地球静止轨道任务进行了数值仿真验证,并对测角频率等参数的定轨敏感性进行分析。仿真结果表明,在240 s内仅进行三次角度观测的条件下,该模型对初始相对距离估计的平均绝对百分比误差约为0.36%,目标轨道速度的估计误差在米/秒量级,可实现高精度的超短弧段稀疏无源测量定轨。 展开更多
关键词 空间态势感知 初始定轨 仅测角 径向基函数神经网络 双星协同
在线阅读 下载PDF
基于RBFNN-ISSA的特大跨径悬索桥有限元模型修正 被引量:2
15
作者 王祺顺 何维 +2 位作者 吴欣 郭伟奇 雷顺成 《振动与冲击》 EI CSCD 北大核心 2024年第7期155-167,共13页
针对大跨径悬索桥一类复杂结构的有限元模型修正问题,提出了一种基于径向基神经网络(radial basis function neural network,RBFNN)子结构代理模型与改进麻雀搜索算法(improved sparrow search algorithm,ISSA)的有限元模型修正方法。首... 针对大跨径悬索桥一类复杂结构的有限元模型修正问题,提出了一种基于径向基神经网络(radial basis function neural network,RBFNN)子结构代理模型与改进麻雀搜索算法(improved sparrow search algorithm,ISSA)的有限元模型修正方法。首先,基于桥梁图纸数据采用通用有限元软件建立一座大跨悬索桥的初始有限元模型,并根据拉丁超立方抽样原则生成子结构材料参数-结构响应的训练样本,通过RBF神经网络和子结构模拟方法对初始有限元模型进行解构重组和样本学习,拟合关于材料参数-结构响应的代理模型。其次,建立考虑主梁挠度和模态频率误差最小的有限元模型参数修正数学优化模型,采用Tent混沌映射及黄金正弦策略改进标准麻雀搜索算法,引入柯西分布函数和贪心保留策略对每一代麻雀种群进行扰动,以用于求解联合静、动力特征的有限元模型修正数学优化问题。最后,以杭瑞高速洞庭湖大桥为工程背景,进行了悬索桥荷载试验,利用实测桥梁响应数据验证了该方法的可行性。研究结果表明:基于RBF神经网络与子结构法的模型修正方法,可以建立拟合精度较高的悬索桥结构代理模型;基于子结构RBF神经网络与改进麻雀搜索算法修正后的有限元模型相较于整体RBF神经网络、支持向量机和Kriging模型,大幅提升了对于实际结构的模拟精度,与实测数据相比,修正前后有限元模型在两级静力加载工况下13个有效测点挠度的平均相对误差降低了25%以上,前8阶模态频率的平均相对误差由-6.83%降至-2.38%,MAC值结果表明修正后模型能够准确地反映出大桥的实际振动状态,有效改善了初始有限元模型计算失真的情况;此外,基于混合策略改进后的麻雀搜索算法对于有限元模型修正参数的寻优具有更佳的收敛效率和稳定性。 展开更多
关键词 桥梁工程 有限元模型修正 改进麻雀搜索算法(ISSA) 悬索桥 径向基神经网络(rbfnn) 柯西变异策略
在线阅读 下载PDF
Estimation of equivalent internal-resistance of PEM fuel cell using artificial neural networks
16
作者 李炜 朱新坚 莫志军 《Journal of Central South University of Technology》 EI 2007年第5期690-695,共6页
A practical method of estimation for the internal-resistance of polymer electrolyte membrane fuel cell (PEMFC) stack was adopted based on radial basis function (RBF) neural networks. In the training process, k-means c... A practical method of estimation for the internal-resistance of polymer electrolyte membrane fuel cell (PEMFC) stack was adopted based on radial basis function (RBF) neural networks. In the training process, k-means clustering algorithm was applied to select the network centers of the input training data. Furthermore, an equivalent electrical-circuit model with this internal-resistance was developed for investigation on the stack. Finally using the neural networks model of the equivalent resistance in the PEMFC stack, the simulation results of the estimation of equivalent internal-resistance of PEMFC were presented. The results show that this electrical PEMFC model is effective and is suitable for the study of control scheme, fault detection and the engineering analysis of electrical circuits. 展开更多
关键词 polymer electrolyte membrane fuel cell(PEMFC) equivalent internal-resistance radial basis function neural networks
在线阅读 下载PDF
基于RBFNN的智能车辆转向系统的预设性能控制
17
作者 黄艳玲 李红娟 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2024年第1期85-92,共8页
针对存在模型非线性和参数不确定性的智能车辆转向系统的预设性能跟踪控制问题,采用径向基函数神经网络对转向系统中的不确定非线性进行在线逼近,结合障碍Lyapunov函数技术为智能车辆的线控转向系统设计预设性能控制器。在控制器设计中... 针对存在模型非线性和参数不确定性的智能车辆转向系统的预设性能跟踪控制问题,采用径向基函数神经网络对转向系统中的不确定非线性进行在线逼近,结合障碍Lyapunov函数技术为智能车辆的线控转向系统设计预设性能控制器。在控制器设计中,采用动态增益技术补偿控制增益未知对系统控制性能的影响。利用Lyapunov方法分析系统的稳定性,证明在控制器作用下,前轮转角的跟踪误差在预设的时间内收敛至原点预设的邻域;通过数值仿真和整车实验验证了控制方法的合理性。 展开更多
关键词 转向系统 不确定非线性 未知控制增益 径向基函数神经网络 预设性能控制
在线阅读 下载PDF
差分GWO优化RBFNN模型及粮食产量预测应用 被引量:1
18
作者 张小庆 许荣杰 +1 位作者 冯晓祥 叶亮 《计算机工程与设计》 北大核心 2024年第12期3802-3811,共10页
针对粮食产量预测方法预测精度的不足,提出一种融入差分进化自适应灰狼算法优化正则项径向基神经网络的粮食产量预测模型DEGWO-RBFNN。为提高灰狼算法的搜索精度,引入指数分布随机数初始化种群,提升初始种群质量;设计Sigmoid函数自适应... 针对粮食产量预测方法预测精度的不足,提出一种融入差分进化自适应灰狼算法优化正则项径向基神经网络的粮食产量预测模型DEGWO-RBFNN。为提高灰狼算法的搜索精度,引入指数分布随机数初始化种群,提升初始种群质量;设计Sigmoid函数自适应缩放因子均衡算法搜索与开发;引入差分进化提高全局搜索能力。利用改进GWO搜索RBFNN超参数,解决网格调参易陷入局部最优及初值敏感的不足。实验结果表明,与GWO-RBFNN、RBFNN、DE-RBFNN、BPNN、GA-BPNN、支持向量机、随机森林相比,DEGWO-RBFNN预测精度达到96.06%,比对比模型可提高2.47%~14.79%。 展开更多
关键词 径向基神经网络 粮食产量预测 灰狼优化算法 差分进化 指数分布 自适应缩放因子 正则项
在线阅读 下载PDF
基于层级分解的前围声学包多目标优化 被引量:1
19
作者 杨帅 吴宪 薛顺达 《振动与冲击》 北大核心 2025年第3期267-277,共11页
搭建了前围声学包多层级目标分解架构,提出GAPSO-RBFNN(genetic algorithm particle swarm optimization-radial basis function neural network)预测模型,并将其应用于多层级目标分解架构。将材料数据库、覆盖率、泄漏量作为优化的变... 搭建了前围声学包多层级目标分解架构,提出GAPSO-RBFNN(genetic algorithm particle swarm optimization-radial basis function neural network)预测模型,并将其应用于多层级目标分解架构。将材料数据库、覆盖率、泄漏量作为优化的变量范围,以PBNR(power based noise reduction)均值作为约束,以质量和成本作为优化目标,采用非支配排序遗传算法(nondominated sorting genetic algorithm II,NSGA-II)进行多目标优化,得到Pareto多目标解集。并从中选取满足设计目标的最佳组合方案(材料组合、覆盖率、前围过孔密封方案选型)。结果显示,该模型最终的优化结果与实测结果接近,误差分别为0.35%,1.47%,1.82%,相较于初始声学包方案,优化后的结果显示,PBNR均值提升3.05%,其质量降低52.38%,成本降低15.15%,验证了所提方法的有效性和准确性。 展开更多
关键词 GAPSO-rbfnn 声学包 PBNR NSGA-II Pareto多目标解集
在线阅读 下载PDF
船用起重机自适应神经网络滑模防摆控制
20
作者 陈志梅 王艳芳 +2 位作者 朱东科 邵雪卷 张井岗 《上海海事大学学报》 北大核心 2025年第2期137-143,共7页
针对欠驱动船用臂架起重机存在持续不确定上界干扰问题,提出一种自适应径向基函数神经网络(adaptive radial basis function neural network,ARBFNN)分层滑模控制(hierarchical sliding mode control,HSMC)方法(称为ARBFNN-HSMC方法)。... 针对欠驱动船用臂架起重机存在持续不确定上界干扰问题,提出一种自适应径向基函数神经网络(adaptive radial basis function neural network,ARBFNN)分层滑模控制(hierarchical sliding mode control,HSMC)方法(称为ARBFNN-HSMC方法)。采用拉格朗日方法建立受海浪持续影响的船舶-起重机-负载复杂系统的动力学模型,并将其转换为欠驱动系统的标准形式;采用HSMC方法设计控制律,以补偿系统参数的摄动;通过ARBFNN逼近并补偿由外部非线性干扰引起的不确定上界扰动,并利用李雅普诺夫函数证明了系统的渐近稳定性。仿真结果表明,该方法在持续未知干扰下具有很强的鲁棒性,能够有效实现负载定位和消除摆动的双重目标。 展开更多
关键词 船用起重机 防摆控制 欠驱动系统 分层滑模控制(HSMC) 自适应径向基函数神经网络(Arbfnn)
在线阅读 下载PDF
上一页 1 2 88 下一页 到第
使用帮助 返回顶部