An element-free Galerkin method(EFGM) is used to solve the two-dimensional(2D) ground penetrating radar(GPR)modelling problems, due to its simple pre-processing, the absence of elements and high accuracy. Different fr...An element-free Galerkin method(EFGM) is used to solve the two-dimensional(2D) ground penetrating radar(GPR)modelling problems, due to its simple pre-processing, the absence of elements and high accuracy. Different from element-based numerical methods, this approach makes nodes free from the elemental restraint and avoids the explicit mesh discretization. First, we derived the boundary value problem for the 2D GPR simulation problems. Second, a penalty function approach and a boundary condition truncated method were used to enforce the essential and the absorbing boundary conditions, respectively. A three-layered GPR model was used to verify our element-free approach. The numerical solutions show that our solutions have an excellent agreement with solutions of a finite element method(FEM). Then, we used the EFGM to simulate one more complex model to show its capability and limitations. Simulation results show that one obvious advantage of EFGM is the absence of element mesh, which makes the method very flexible. Due to the use of MLS fitting, a key feature of EFM, is that both the dependent variable and its gradient are continuous and have high precision.展开更多
This paper presents a novel method for fast calculation of radar echo in near-field regions after the equivalent source has been computed by method of moments(MoM).An easy-to-access near-field database(NFDB)is establi...This paper presents a novel method for fast calculation of radar echo in near-field regions after the equivalent source has been computed by method of moments(MoM).An easy-to-access near-field database(NFDB)is established,which is built on the auxiliary tetrahedral meshes surrounding the nearfield regions of interest.The near-fields calculation(NFC)of arbitrary observation points can be expressed explicitly via the NFDB.An efficient matrix compression scheme named random sampling-based butterfly factorization(RS-BF)is proposed to speed up the construction of NFDB.With this approach,each group of O(N)elements in the database can be calculated through one fast matrix-vector multiplication operation that has a computational complexity below O(Nlog~2 N).The proposed method can avoid time-consuming point-by-point NFC of the traditional methods.Several numerical examples are presented to demonstrate the accuracy and efficiency of this method.In particular,the echo simulation of a missile-target encounter example is presented to illustrate its capability for practical applications.展开更多
Polarization feature is one of the important features of radar targets,which has been used in many fields.In this paper,the grid models of some typical foreign moving targets are constructed on the simulation platform...Polarization feature is one of the important features of radar targets,which has been used in many fields.In this paper,the grid models of some typical foreign moving targets are constructed on the simulation platform,such as glider,cruiser,fixed wing aircraft,and rotorcraft.The electromagnetic scattering characteristics of the moving platforms under the incidence of circular polarization waves are calculated.The typical polarization characteristics which the orthogonal and in-phase components have in the echoes are analyzed and proved.Based on the polarization scattering matrix(PSM)theory,from the point of view of the physical reproduction,the technical status quo that the existing technical approaches are difficult to realize the passive simulation of polarization characteristic of the target is summarized.To solve this problem,combined with the vector synthesis law,the realization mechanism of controllable polarization characteristic of target echoes is proposed,the analytical expressions of polarization control matrix and polarization ratio are deduced,and the controllability of polarization ratio feature in the case of circular polarization is verified by simulation calculation.展开更多
The parametric scattering center model of radar tar-get has the advantages of simplicity,sparsity and mechanism relevant,making it widely applied in fields such as radar data compression and rapid generation,radar ima...The parametric scattering center model of radar tar-get has the advantages of simplicity,sparsity and mechanism relevant,making it widely applied in fields such as radar data compression and rapid generation,radar imaging,feature extraction and recognition.This paper summarizes and analyzes the research situation,development trend,and difficult prob-lems on scattering center(SC)parametric modeling from three aspects:parametric representation,determination method of model parameters,and application.展开更多
基金Project(41074085)supported by the National Natural Science Foundation of ChinaProject(NCET-12-0551)supported by the Funds for New Century Excellent Talents in University,ChinaProject supported by Shenghua Yuying Program of Central South University,China
文摘An element-free Galerkin method(EFGM) is used to solve the two-dimensional(2D) ground penetrating radar(GPR)modelling problems, due to its simple pre-processing, the absence of elements and high accuracy. Different from element-based numerical methods, this approach makes nodes free from the elemental restraint and avoids the explicit mesh discretization. First, we derived the boundary value problem for the 2D GPR simulation problems. Second, a penalty function approach and a boundary condition truncated method were used to enforce the essential and the absorbing boundary conditions, respectively. A three-layered GPR model was used to verify our element-free approach. The numerical solutions show that our solutions have an excellent agreement with solutions of a finite element method(FEM). Then, we used the EFGM to simulate one more complex model to show its capability and limitations. Simulation results show that one obvious advantage of EFGM is the absence of element mesh, which makes the method very flexible. Due to the use of MLS fitting, a key feature of EFM, is that both the dependent variable and its gradient are continuous and have high precision.
基金the National Key Research and Development Program of China(2017YFB0202500)。
文摘This paper presents a novel method for fast calculation of radar echo in near-field regions after the equivalent source has been computed by method of moments(MoM).An easy-to-access near-field database(NFDB)is established,which is built on the auxiliary tetrahedral meshes surrounding the nearfield regions of interest.The near-fields calculation(NFC)of arbitrary observation points can be expressed explicitly via the NFDB.An efficient matrix compression scheme named random sampling-based butterfly factorization(RS-BF)is proposed to speed up the construction of NFDB.With this approach,each group of O(N)elements in the database can be calculated through one fast matrix-vector multiplication operation that has a computational complexity below O(Nlog~2 N).The proposed method can avoid time-consuming point-by-point NFC of the traditional methods.Several numerical examples are presented to demonstrate the accuracy and efficiency of this method.In particular,the echo simulation of a missile-target encounter example is presented to illustrate its capability for practical applications.
基金supported by the National Natural Science Foundation of China(11927803A020414).
文摘Polarization feature is one of the important features of radar targets,which has been used in many fields.In this paper,the grid models of some typical foreign moving targets are constructed on the simulation platform,such as glider,cruiser,fixed wing aircraft,and rotorcraft.The electromagnetic scattering characteristics of the moving platforms under the incidence of circular polarization waves are calculated.The typical polarization characteristics which the orthogonal and in-phase components have in the echoes are analyzed and proved.Based on the polarization scattering matrix(PSM)theory,from the point of view of the physical reproduction,the technical status quo that the existing technical approaches are difficult to realize the passive simulation of polarization characteristic of the target is summarized.To solve this problem,combined with the vector synthesis law,the realization mechanism of controllable polarization characteristic of target echoes is proposed,the analytical expressions of polarization control matrix and polarization ratio are deduced,and the controllability of polarization ratio feature in the case of circular polarization is verified by simulation calculation.
基金supported by the National Natural Science Foundation of China(62231001).
文摘The parametric scattering center model of radar tar-get has the advantages of simplicity,sparsity and mechanism relevant,making it widely applied in fields such as radar data compression and rapid generation,radar imaging,feature extraction and recognition.This paper summarizes and analyzes the research situation,development trend,and difficult prob-lems on scattering center(SC)parametric modeling from three aspects:parametric representation,determination method of model parameters,and application.