This paper presents a novel method for radar emitter signal recognition. First, wavelet packet transform (WPT) is introduced to extract features from radar emitter signals. Then, rough set theory is used to select t...This paper presents a novel method for radar emitter signal recognition. First, wavelet packet transform (WPT) is introduced to extract features from radar emitter signals. Then, rough set theory is used to select the optimal feature subset with good discriminability from original feature set, and support vector machines (SVMs) are employed to design classifiers. A large number of experimental results show that the proposed method achieves very high recognition rates for 9 radar emitter signals in a wide range of signal-to-noise rates, and proves a feasible and valid method.展开更多
Intra-pulse characteristics of different radar emitter signals reflect on signal waveform by way of changing frequency, phase and amplitude. A novel approach was proposed to extract complexity features of radar emitte...Intra-pulse characteristics of different radar emitter signals reflect on signal waveform by way of changing frequency, phase and amplitude. A novel approach was proposed to extract complexity features of radar emitter signals in a wide range of signal-to-noise ratio (SNR), and radial basis probability neural network (RBPNN) was used to recognize different radar emitter signals. Complexity features, including Lempel-Ziv complexity (LZC) and correlation dimension (CD), can measure the complexity and irregularity of signals, which mirrors the intra-pulse modulation laws of radar emitter signals. In an experiment, LZC and CD features of 10 typical radar emitter signals were extracted and RBPNN was applied to identify the 10 radar emitter signals. Simulation results show that the proposed approach is effective and has good application values because average accurate recognition rate is high when SNR varies in a wide range.展开更多
A full-polarimetric super-resolution algorithm with spatial smoothing processing is presented for one-dimensional(1-D)radar imaging.The coherence between scattering centers is minimized by using spatial smoothing pr...A full-polarimetric super-resolution algorithm with spatial smoothing processing is presented for one-dimensional(1-D)radar imaging.The coherence between scattering centers is minimized by using spatial smoothing processing(SSP).Then the range and polarimetric scattering matrix of the scattering centers are estimated.The impact of different lengths of the smoothing window on the imaging quality is mainly analyzed with different signal-to-noise ratios(SNR).Simulation and experimental results show that an improved radar super-resolution range profile and more precise estimation can be obtained by adjusting the length of the smoothing window under different SNR conditions.展开更多
The problem of joint direction of arrival (DOA) and Doppler frequency estimation in monostatic multiple-input multiple-output (MIMO) radar is studied and a computationally efficient multiple signal classification (CE-...The problem of joint direction of arrival (DOA) and Doppler frequency estimation in monostatic multiple-input multiple-output (MIMO) radar is studied and a computationally efficient multiple signal classification (CE-MUSIC) algorithm is proposed.Conventional MUSIC algorithm for joint DOA and Doppler frequency estimation requires a large computational cost due to the two dimensional (2D) spectral peak searching.Aiming at this shortcoming,the proposed CE-MUSIC algorithm firstly uses a reduced-dimension transformation to reduce the subspace dimension and then obtains the estimates of DOA and Doppler frequency with only one-dimensional (1D) search.The proposed CE-MUSIC algorithm has much lower computational complexity and very close estimation performance when compared to conventional 2D-MUSIC algorithm.Furthermore,it outperforms estimation of signal parameters via rotational invariance technique (ESPRIT) algorithm.Meanwhile,the mean squared error (MSE) and Cramer-Rao bound (CRB) of joint DOA and Doppler frequency estimation are derived.Detailed simulation results illustrate the validity and improvement of the proposed algorithm.展开更多
基于视频的目标检测在恶劣天气情况下识别效果较差,故需弥补视频缺陷、提高检测框架的鲁棒性。针对此问题,文中设计了一个基于雷达和视频融合的目标检测框架,利用YOLOv5(You Only Look Once version 5)网络获得图片特征图与图片检测框,...基于视频的目标检测在恶劣天气情况下识别效果较差,故需弥补视频缺陷、提高检测框架的鲁棒性。针对此问题,文中设计了一个基于雷达和视频融合的目标检测框架,利用YOLOv5(You Only Look Once version 5)网络获得图片特征图与图片检测框,利用基于密度的聚类获得雷达检测框,并将雷达数据进行编码,得到基于雷达信息的目标检测结果。最后将两者的检测框叠加得到新ROI(Region of Interest),并得到融合雷达信息后的分类向量,提高了在极端天气下检测的准确率。实验结果表明,该框架的mAP(mean Average Precision)达到了60.07%,且参数量仅为7.64×10^(6),表明该框架具有轻量级、计算速度快、鲁棒性高等特点,可以被广泛应用于嵌入式与移动端平台。展开更多
文摘This paper presents a novel method for radar emitter signal recognition. First, wavelet packet transform (WPT) is introduced to extract features from radar emitter signals. Then, rough set theory is used to select the optimal feature subset with good discriminability from original feature set, and support vector machines (SVMs) are employed to design classifiers. A large number of experimental results show that the proposed method achieves very high recognition rates for 9 radar emitter signals in a wide range of signal-to-noise rates, and proves a feasible and valid method.
基金TheNationalDefenceFoundation (No .NEWL5 14 35QT2 2 0 4 0 1) ,theDoctoralInnovationFoundationofSWJTU ,andtheMainTeacherSponsorProgramoftheMinistryofEducationofChina (No .6 5 ,2 0 0 0 )
文摘Intra-pulse characteristics of different radar emitter signals reflect on signal waveform by way of changing frequency, phase and amplitude. A novel approach was proposed to extract complexity features of radar emitter signals in a wide range of signal-to-noise ratio (SNR), and radial basis probability neural network (RBPNN) was used to recognize different radar emitter signals. Complexity features, including Lempel-Ziv complexity (LZC) and correlation dimension (CD), can measure the complexity and irregularity of signals, which mirrors the intra-pulse modulation laws of radar emitter signals. In an experiment, LZC and CD features of 10 typical radar emitter signals were extracted and RBPNN was applied to identify the 10 radar emitter signals. Simulation results show that the proposed approach is effective and has good application values because average accurate recognition rate is high when SNR varies in a wide range.
基金Supported by the National Naturral Science Foundation of China(61301191)
文摘A full-polarimetric super-resolution algorithm with spatial smoothing processing is presented for one-dimensional(1-D)radar imaging.The coherence between scattering centers is minimized by using spatial smoothing processing(SSP).Then the range and polarimetric scattering matrix of the scattering centers are estimated.The impact of different lengths of the smoothing window on the imaging quality is mainly analyzed with different signal-to-noise ratios(SNR).Simulation and experimental results show that an improved radar super-resolution range profile and more precise estimation can be obtained by adjusting the length of the smoothing window under different SNR conditions.
基金supported in part by the Funding for Outstanding Doctoral Dissertation in NUAA (No.BCXJ1503)the Funding of Jiangsu Innovation Program for Graduate Education(No.KYLX15_0281)the Fundamental Research Funds for the Central Universities
文摘The problem of joint direction of arrival (DOA) and Doppler frequency estimation in monostatic multiple-input multiple-output (MIMO) radar is studied and a computationally efficient multiple signal classification (CE-MUSIC) algorithm is proposed.Conventional MUSIC algorithm for joint DOA and Doppler frequency estimation requires a large computational cost due to the two dimensional (2D) spectral peak searching.Aiming at this shortcoming,the proposed CE-MUSIC algorithm firstly uses a reduced-dimension transformation to reduce the subspace dimension and then obtains the estimates of DOA and Doppler frequency with only one-dimensional (1D) search.The proposed CE-MUSIC algorithm has much lower computational complexity and very close estimation performance when compared to conventional 2D-MUSIC algorithm.Furthermore,it outperforms estimation of signal parameters via rotational invariance technique (ESPRIT) algorithm.Meanwhile,the mean squared error (MSE) and Cramer-Rao bound (CRB) of joint DOA and Doppler frequency estimation are derived.Detailed simulation results illustrate the validity and improvement of the proposed algorithm.
文摘基于视频的目标检测在恶劣天气情况下识别效果较差,故需弥补视频缺陷、提高检测框架的鲁棒性。针对此问题,文中设计了一个基于雷达和视频融合的目标检测框架,利用YOLOv5(You Only Look Once version 5)网络获得图片特征图与图片检测框,利用基于密度的聚类获得雷达检测框,并将雷达数据进行编码,得到基于雷达信息的目标检测结果。最后将两者的检测框叠加得到新ROI(Region of Interest),并得到融合雷达信息后的分类向量,提高了在极端天气下检测的准确率。实验结果表明,该框架的mAP(mean Average Precision)达到了60.07%,且参数量仅为7.64×10^(6),表明该框架具有轻量级、计算速度快、鲁棒性高等特点,可以被广泛应用于嵌入式与移动端平台。