Cognitive bias,stemming from electronic measurement error and variability in human perception,exists in cognitive electronic warfare and affects the outcomes of conflicts.In this paper,the dynamic game approach is emp...Cognitive bias,stemming from electronic measurement error and variability in human perception,exists in cognitive electronic warfare and affects the outcomes of conflicts.In this paper,the dynamic game approach is employed to develop a model for cognitive bias induced by incomplete information and measurement errors in cognitive radar countermeasures.The payoffs for both parties are calculated using the radar's anti-jamming strategy matrix A and the jammer's jamming strategy matrix B.With perfect Bayesian equilibrium,a dynamic radar countermeasure model is established,and the impact of cognitive bias is analyzed.Drawing inspiration from the cognitive bias analysis method used in stock market trading,a cognitive bias model for cognitive radar countermeasures is introduced,and its correctness is mathematically proved.A gaming scenario involving the AN/SPY-1 radar and a smart jammer is set up to analyze the influence of cognitive bias on game outcomes.Simulation results validate the effectiveness of the proposed method.展开更多
The dwell scheduling problem for a multifunctional radar system is led to the formation of corresponding optimiza-tion problem.In order to solve the resulting optimization prob-lem,the dwell scheduling process in a sc...The dwell scheduling problem for a multifunctional radar system is led to the formation of corresponding optimiza-tion problem.In order to solve the resulting optimization prob-lem,the dwell scheduling process in a scheduling interval(SI)is formulated as a Markov decision process(MDP),where the state,action,and reward are specified for this dwell scheduling problem.Specially,the action is defined as scheduling the task on the left side,right side or in the middle of the radar idle time-line,which reduces the action space effectively and accelerates the convergence of the training.Through the above process,a model-free reinforcement learning framework is established.Then,an adaptive dwell scheduling method based on Q-learn-ing is proposed,where the converged Q value table after train-ing is utilized to instruct the scheduling process.Simulation results demonstrate that compared with existing dwell schedul-ing algorithms,the proposed one can achieve better scheduling performance considering the urgency criterion,the importance criterion and the desired execution time criterion comprehen-sively.The average running time shows the proposed algorithm has real-time performance.展开更多
Automatically recognizing radar emitters from com-plex electromagnetic environments is important but non-trivial.Moreover,the changing electromagnetic environment results in inconsistent signal distribution in the rea...Automatically recognizing radar emitters from com-plex electromagnetic environments is important but non-trivial.Moreover,the changing electromagnetic environment results in inconsistent signal distribution in the real world,which makes the existing approaches perform poorly for recognition tasks in different scenes.In this paper,we propose a domain generaliza-tion framework is proposed to improve the adaptability of radar emitter signal recognition in changing environments.Specifically,we propose an end-to-end denoising based domain-invariant radar emitter recognition network(DDIRNet)consisting of a denoising model and a domain invariant representation learning model(IRLM),which mutually benefit from each other.For the signal denoising model,a loss function is proposed to match the feature of the radar signals and guarantee the effectiveness of the model.For the domain invariant representation learning model,contrastive learning is introduced to learn the cross-domain feature by aligning the source and unseen domain distri-bution.Moreover,we design a data augmentation method that improves the diversity of signal data for training.Extensive experiments on classification have shown that DDIRNet achieves up to 6.4%improvement compared with the state-of-the-art radar emitter recognition methods.The proposed method pro-vides a promising direction to solve the radar emitter signal recognition problem.展开更多
Accurate target angle estimation is one of the chal-lenges for wideband radars due to the fact that target occupies multiple range bins,resulting in lower energy or signal to noise ratio in a single range bin.This pap...Accurate target angle estimation is one of the chal-lenges for wideband radars due to the fact that target occupies multiple range bins,resulting in lower energy or signal to noise ratio in a single range bin.This paper proposes a processing technique for enhanced accuracy of target angle estimates for wideband monopulse radars.Firstly,to accumulate the energy of the received echo signals from different scatterers on a target,the phase difference between different scatterers on a target is estimated using the minimum entropy phase estimation method combining with the correlation between adjacent pulses.Then,the monopulse ratio is obtained by using the signals from the accumulated sum and difference channels.The target angle is estimated by weighting the accumulated echo energy for accu-racy enhancement.Experimental results based on both numeri-cal simulation and measured data are presented to validate the effectiveness of the proposed technique.展开更多
This paper presents a quadcopter system for naviga-tion in outdoor urban environments.The main contributions include the hardware design,the establishment of global occu-pancy grid maps based on millimeter-wave radars...This paper presents a quadcopter system for naviga-tion in outdoor urban environments.The main contributions include the hardware design,the establishment of global occu-pancy grid maps based on millimeter-wave radars,the trajec-tory planning scheme based on optimal virtual tube methods,and the controller structure based on dynamics.The proposed system focuses on utilizing a compact and lightweight quadro-tor with sensors to achieve navigation that conforms to the direction of urban roads with high computational efficiency and safety.Our work is an application of millimeter-wave radars and virtual tube planning for obstacle avoidance in navigation.The validness and effectiveness of the proposed system are verified by experiments.展开更多
In this paper,we propose an improved YOLOv5-based object detection method for radar images,which have the characteristics of diffuse weak noise and imaging distortion.To mitigate the effects of noise without losing sp...In this paper,we propose an improved YOLOv5-based object detection method for radar images,which have the characteristics of diffuse weak noise and imaging distortion.To mitigate the effects of noise without losing spatial information,an coordinate attention(CA)has been added to pre-extract the feature of the images,which can guarantee a better feature extraction ability.A new stochastic weighted average(SWA)method is designed to refine generalization ability of the algo-rithm,where the medium mean is used instead of their average value.By introducing an deformable convolution,both regular and irregular images can be proceeded.The experimental results show that the improved algorithm performs better in object detection of radar images compared with the YOLOv5 model,which confirms the effectiveness and feasibility of our model.展开更多
Implementing an efficient real-time prognostics and health management (PHM) framework improves safety and reduces maintenance costs in complex engineering systems.However, research on PHM framework development for rad...Implementing an efficient real-time prognostics and health management (PHM) framework improves safety and reduces maintenance costs in complex engineering systems.However, research on PHM framework development for radar systems is limited. Furthermore, typical PHM approaches are centralized, do not scale well, and are challenging to implement.This paper proposes an integrated PHM framework for radar systems based on system structural decomposition to enhance reliability and support maintenance actions. The complexity challenge associated with implementing PHM at the system level is addressed by dividing the radar system into subsystems. Subsequently, optimal measurement point selection and sensor placement algorithms are formulated for effective data acquisition. Local modules are developed for each subsystem health assessment, fault diagnosis, and fault prediction without a centralized controller. Maintenance decisions are based on each local module’s fault diagnosis and prediction results. To further improve the effectiveness of the prognostics stage, the feasibility of integrating deep learning (DL) models is also investigated.Several experiments with different degradation patterns are performed to evaluate the effectiveness of the framework’s DLbased prognostics model. The proposed framework facilitates transitioning from traditional reactive maintenance practices to a predictive maintenance approach, thereby reducing downtime and improving the overall availability of radar systems.展开更多
Most of the existing non-line-of-sight(NLOS)localization methods depend on the layout information of the scene which is difficult to be obtained in advance in the practical application scenarios.To solve the problem,a...Most of the existing non-line-of-sight(NLOS)localization methods depend on the layout information of the scene which is difficult to be obtained in advance in the practical application scenarios.To solve the problem,an NLOS target localization method in unknown L-shaped corridor based ultra-wideband(UWB)multiple-input multiple-output(MIMO)radar is proposed in this paper.Firstly,the multipath propagation model of Lshaped corridor is established.Then,the localization process is analyzed by the propagation characteristics of diffraction and reflection.Specifically,two different back-projection imaging processes are performed on the radar echo,and the positions of focus regions in the two images are extracted to generate candidate targets.Furthermore,the distances of propagation paths corresponding to each candidate target are calculated,and then the similarity between each candidate target and the target is evaluated by employing two matching factors.The locations of the targets and the width of the corridor are determined based on the matching rules.Finally,two experiments are carried out to demonstrate that the method can effectively obtain the target positions and unknown scene information even when partial paths are lost.展开更多
Nonperiodic interrupted sampling repeater jamming(ISRJ)against inverse synthetic aperture radar(ISAR)can obtain two-dimensional blanket jamming performance by joint fast and slow time domain interrupted modulation,whi...Nonperiodic interrupted sampling repeater jamming(ISRJ)against inverse synthetic aperture radar(ISAR)can obtain two-dimensional blanket jamming performance by joint fast and slow time domain interrupted modulation,which is obviously dif-ferent from the conventional multi-false-target deception jam-ming.In this paper,a suppression method against this kind of novel jamming is proposed based on inter-pulse energy function and compressed sensing theory.By utilizing the discontinuous property of the jamming in slow time domain,the unjammed pulse is separated using the intra-pulse energy function diffe-rence.Based on this,the two-dimensional orthogonal matching pursuit(2D-OMP)algorithm is proposed.Further,it is proposed to reconstruct the ISAR image with the obtained unjammed pulse sequence.The validity of the proposed method is demon-strated via the Yake-42 plane data simulations.展开更多
To enhance direction of arrival(DOA)estimation accuracy,this paper proposes a low-cost method for calibrating farfield steering vectors of large aperture millimeter wave radar(mmWR).To this end,we first derive the ste...To enhance direction of arrival(DOA)estimation accuracy,this paper proposes a low-cost method for calibrating farfield steering vectors of large aperture millimeter wave radar(mmWR).To this end,we first derive the steering vectors with amplitude and phase errors,assuming that mmWR works in the time-sharing mode.Then,approximate relationship between the near-field calibration steering vector and the far-field calibration steering vector is analyzed,which is used to accomplish the mapping between the two of them.Finally,simulation results verify that the proposed method can effectively improve the angle measurement accuracy of mmWR with existing amplitude and phase errors.展开更多
The proposed Doppler measurement technique shows that the Doppler measurements can be accomplished by a single pulse with multiple frequency components through optical fibre delay lines.Range and velocity ambiguity ca...The proposed Doppler measurement technique shows that the Doppler measurements can be accomplished by a single pulse with multiple frequency components through optical fibre delay lines.Range and velocity ambiguity can be removed,and the velocity resolution can be improved dramatically by using long optical fibre delay lines.Furthermore,the velocity resolution can be modified by adjusting the length of optical fibre delay lines.In addition,the proposed radar can achieve high range resolution by using a single wideband pulse.As a result,the new approach can improve radar performance significantly.展开更多
A new method of single sample polarization filtering is proposed. The algorithm is fast and suitable for the polarization processing of stationary or nonstationary polarized disturbed signals with one or more independ...A new method of single sample polarization filtering is proposed. The algorithm is fast and suitable for the polarization processing of stationary or nonstationary polarized disturbed signals with one or more independent disturbances. A ground wave polarimetric radar with the ability of radio disturbance suppression is then introduced. Some numerical results demonstrate the effectiveness of single sample polarization filtering method for ground wave polarimetric radar.展开更多
Ground penetrating radar (GPR) is a remote sensing technique used to obtain information on subsurface features from data collected over the surface. We propose an automatic algorithm for estimating object depth using...Ground penetrating radar (GPR) is a remote sensing technique used to obtain information on subsurface features from data collected over the surface. We propose an automatic algorithm for estimating object depth using f-k migration and velocity scanning methods in a homogeneous medium. To improve the accuracy of the algorithm, the formula used to calculate the GPR valid lateral aperture is also presented. Experimental results show that the relative estimating error of depth is as low as 5% in a homogeneous medium.展开更多
Using super resolution direction of arrival(DOA) estimation algorithm to reduce the resolution angle is an effective method for passive radar seeker(PRS) to antagonize non-coherent radar decoy.Considering the powe...Using super resolution direction of arrival(DOA) estimation algorithm to reduce the resolution angle is an effective method for passive radar seeker(PRS) to antagonize non-coherent radar decoy.Considering the power and correlation property between radar and non-coherent decoy,an improved subspace DOA estimation method based on traditional subspace algorithm is proposed.Because this new method uses the invariance property of noise subspace,compared with traditional MUSIC algorithm,it shows not only better resolution in condition of closely spaced sources,but also superior performance in case of different power or partially correlated sources.Using this new method,PRS can distinguish radar and non-coherent decoy with good performance.Both the simulation result and the experimental data confirm the performance of the method.展开更多
A new method, SVD-TLS extending Prony algorithm, is introduced for extracting UWB radar target features. The method is a modified classical Prony method based on singular value decomposition and total least squares th...A new method, SVD-TLS extending Prony algorithm, is introduced for extracting UWB radar target features. The method is a modified classical Prony method based on singular value decomposition and total least squares that can improve robust for spectrum estimation. Simulation results show that poles and residuum of target echo can be extracted effectively using this method, and at the same time, random noises can be restrained to some degree. It is applicable for target feature extraction such as UWB radar or other high resolution range radars.展开更多
The polarization filter using three orthogonal linear polarization antennas can suppress more disturbances than the polarization filter using two orthogonal linear polarization antennas in HF ground wave radar. But th...The polarization filter using three orthogonal linear polarization antennas can suppress more disturbances than the polarization filter using two orthogonal linear polarization antennas in HF ground wave radar. But the algorithm of the threedimension filter is relatively complicated and not suitable for real-time processing. It can't use linear and nonlinear polarization vector translation technique directly. A modified polarization filter which is simple and has same suppressing ability as the three-dimension polarization filter is given. It only has half parameters of the primary one. Some problems about estimation of polarization parameters and selection of disturbances are discussed. A method of holding the phase of radar backscatter signal constantly is put forward so that unstationary disturbance signal can be processed.展开更多
文摘Cognitive bias,stemming from electronic measurement error and variability in human perception,exists in cognitive electronic warfare and affects the outcomes of conflicts.In this paper,the dynamic game approach is employed to develop a model for cognitive bias induced by incomplete information and measurement errors in cognitive radar countermeasures.The payoffs for both parties are calculated using the radar's anti-jamming strategy matrix A and the jammer's jamming strategy matrix B.With perfect Bayesian equilibrium,a dynamic radar countermeasure model is established,and the impact of cognitive bias is analyzed.Drawing inspiration from the cognitive bias analysis method used in stock market trading,a cognitive bias model for cognitive radar countermeasures is introduced,and its correctness is mathematically proved.A gaming scenario involving the AN/SPY-1 radar and a smart jammer is set up to analyze the influence of cognitive bias on game outcomes.Simulation results validate the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China(6177109562031007).
文摘The dwell scheduling problem for a multifunctional radar system is led to the formation of corresponding optimiza-tion problem.In order to solve the resulting optimization prob-lem,the dwell scheduling process in a scheduling interval(SI)is formulated as a Markov decision process(MDP),where the state,action,and reward are specified for this dwell scheduling problem.Specially,the action is defined as scheduling the task on the left side,right side or in the middle of the radar idle time-line,which reduces the action space effectively and accelerates the convergence of the training.Through the above process,a model-free reinforcement learning framework is established.Then,an adaptive dwell scheduling method based on Q-learn-ing is proposed,where the converged Q value table after train-ing is utilized to instruct the scheduling process.Simulation results demonstrate that compared with existing dwell schedul-ing algorithms,the proposed one can achieve better scheduling performance considering the urgency criterion,the importance criterion and the desired execution time criterion comprehen-sively.The average running time shows the proposed algorithm has real-time performance.
基金supported by the National Natural Science Foundation of China(62101575)the Research Project of NUDT(ZK22-57)the Self-directed Project of State Key Laboratory of High Performance Computing(202101-16).
文摘Automatically recognizing radar emitters from com-plex electromagnetic environments is important but non-trivial.Moreover,the changing electromagnetic environment results in inconsistent signal distribution in the real world,which makes the existing approaches perform poorly for recognition tasks in different scenes.In this paper,we propose a domain generaliza-tion framework is proposed to improve the adaptability of radar emitter signal recognition in changing environments.Specifically,we propose an end-to-end denoising based domain-invariant radar emitter recognition network(DDIRNet)consisting of a denoising model and a domain invariant representation learning model(IRLM),which mutually benefit from each other.For the signal denoising model,a loss function is proposed to match the feature of the radar signals and guarantee the effectiveness of the model.For the domain invariant representation learning model,contrastive learning is introduced to learn the cross-domain feature by aligning the source and unseen domain distri-bution.Moreover,we design a data augmentation method that improves the diversity of signal data for training.Extensive experiments on classification have shown that DDIRNet achieves up to 6.4%improvement compared with the state-of-the-art radar emitter recognition methods.The proposed method pro-vides a promising direction to solve the radar emitter signal recognition problem.
文摘Accurate target angle estimation is one of the chal-lenges for wideband radars due to the fact that target occupies multiple range bins,resulting in lower energy or signal to noise ratio in a single range bin.This paper proposes a processing technique for enhanced accuracy of target angle estimates for wideband monopulse radars.Firstly,to accumulate the energy of the received echo signals from different scatterers on a target,the phase difference between different scatterers on a target is estimated using the minimum entropy phase estimation method combining with the correlation between adjacent pulses.Then,the monopulse ratio is obtained by using the signals from the accumulated sum and difference channels.The target angle is estimated by weighting the accumulated echo energy for accu-racy enhancement.Experimental results based on both numeri-cal simulation and measured data are presented to validate the effectiveness of the proposed technique.
基金supported by the National Key Research and Development Program of China(2022YFA1004703)the National Natural Science Foundation of China(62088101).
文摘This paper presents a quadcopter system for naviga-tion in outdoor urban environments.The main contributions include the hardware design,the establishment of global occu-pancy grid maps based on millimeter-wave radars,the trajec-tory planning scheme based on optimal virtual tube methods,and the controller structure based on dynamics.The proposed system focuses on utilizing a compact and lightweight quadro-tor with sensors to achieve navigation that conforms to the direction of urban roads with high computational efficiency and safety.Our work is an application of millimeter-wave radars and virtual tube planning for obstacle avoidance in navigation.The validness and effectiveness of the proposed system are verified by experiments.
基金supported by the National Natural Science Foundation of China(6227323662136006+1 种基金62073215)Key R&D Projects in Hainan Province(ZDYF2024GXJS009).
文摘In this paper,we propose an improved YOLOv5-based object detection method for radar images,which have the characteristics of diffuse weak noise and imaging distortion.To mitigate the effects of noise without losing spatial information,an coordinate attention(CA)has been added to pre-extract the feature of the images,which can guarantee a better feature extraction ability.A new stochastic weighted average(SWA)method is designed to refine generalization ability of the algo-rithm,where the medium mean is used instead of their average value.By introducing an deformable convolution,both regular and irregular images can be proceeded.The experimental results show that the improved algorithm performs better in object detection of radar images compared with the YOLOv5 model,which confirms the effectiveness and feasibility of our model.
基金National Natural Science Foundation of China (42027805)。
文摘Implementing an efficient real-time prognostics and health management (PHM) framework improves safety and reduces maintenance costs in complex engineering systems.However, research on PHM framework development for radar systems is limited. Furthermore, typical PHM approaches are centralized, do not scale well, and are challenging to implement.This paper proposes an integrated PHM framework for radar systems based on system structural decomposition to enhance reliability and support maintenance actions. The complexity challenge associated with implementing PHM at the system level is addressed by dividing the radar system into subsystems. Subsequently, optimal measurement point selection and sensor placement algorithms are formulated for effective data acquisition. Local modules are developed for each subsystem health assessment, fault diagnosis, and fault prediction without a centralized controller. Maintenance decisions are based on each local module’s fault diagnosis and prediction results. To further improve the effectiveness of the prognostics stage, the feasibility of integrating deep learning (DL) models is also investigated.Several experiments with different degradation patterns are performed to evaluate the effectiveness of the framework’s DLbased prognostics model. The proposed framework facilitates transitioning from traditional reactive maintenance practices to a predictive maintenance approach, thereby reducing downtime and improving the overall availability of radar systems.
基金supported by National Natural Science Foundation of China(U20B2070,62001091)Sichuan Science and Technology Program(2022YFS0531).
文摘Most of the existing non-line-of-sight(NLOS)localization methods depend on the layout information of the scene which is difficult to be obtained in advance in the practical application scenarios.To solve the problem,an NLOS target localization method in unknown L-shaped corridor based ultra-wideband(UWB)multiple-input multiple-output(MIMO)radar is proposed in this paper.Firstly,the multipath propagation model of Lshaped corridor is established.Then,the localization process is analyzed by the propagation characteristics of diffraction and reflection.Specifically,two different back-projection imaging processes are performed on the radar echo,and the positions of focus regions in the two images are extracted to generate candidate targets.Furthermore,the distances of propagation paths corresponding to each candidate target are calculated,and then the similarity between each candidate target and the target is evaluated by employing two matching factors.The locations of the targets and the width of the corridor are determined based on the matching rules.Finally,two experiments are carried out to demonstrate that the method can effectively obtain the target positions and unknown scene information even when partial paths are lost.
基金supported by the National Natural Science Foundation of China(62001481,61890542,62071475)the Natural Science Foundation of Hunan Province(2022JJ40561)the Research Program of National University of Defense Technology(ZK22-46).
文摘Nonperiodic interrupted sampling repeater jamming(ISRJ)against inverse synthetic aperture radar(ISAR)can obtain two-dimensional blanket jamming performance by joint fast and slow time domain interrupted modulation,which is obviously dif-ferent from the conventional multi-false-target deception jam-ming.In this paper,a suppression method against this kind of novel jamming is proposed based on inter-pulse energy function and compressed sensing theory.By utilizing the discontinuous property of the jamming in slow time domain,the unjammed pulse is separated using the intra-pulse energy function diffe-rence.Based on this,the two-dimensional orthogonal matching pursuit(2D-OMP)algorithm is proposed.Further,it is proposed to reconstruct the ISAR image with the obtained unjammed pulse sequence.The validity of the proposed method is demon-strated via the Yake-42 plane data simulations.
文摘To enhance direction of arrival(DOA)estimation accuracy,this paper proposes a low-cost method for calibrating farfield steering vectors of large aperture millimeter wave radar(mmWR).To this end,we first derive the steering vectors with amplitude and phase errors,assuming that mmWR works in the time-sharing mode.Then,approximate relationship between the near-field calibration steering vector and the far-field calibration steering vector is analyzed,which is used to accomplish the mapping between the two of them.Finally,simulation results verify that the proposed method can effectively improve the angle measurement accuracy of mmWR with existing amplitude and phase errors.
基金supported by the National Natural Science Foundation of China(6107116361071164+5 种基金6147119161501233)the Fundamental Research Funds for the Central Universities(NP2014504)the Aeronautical Science Foundation(20152052026)the Electronic & Information School of Yangtze University Innovation Foundation(2016-DXCX-05)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘The proposed Doppler measurement technique shows that the Doppler measurements can be accomplished by a single pulse with multiple frequency components through optical fibre delay lines.Range and velocity ambiguity can be removed,and the velocity resolution can be improved dramatically by using long optical fibre delay lines.Furthermore,the velocity resolution can be modified by adjusting the length of optical fibre delay lines.In addition,the proposed radar can achieve high range resolution by using a single wideband pulse.As a result,the new approach can improve radar performance significantly.
文摘A new method of single sample polarization filtering is proposed. The algorithm is fast and suitable for the polarization processing of stationary or nonstationary polarized disturbed signals with one or more independent disturbances. A ground wave polarimetric radar with the ability of radio disturbance suppression is then introduced. Some numerical results demonstrate the effectiveness of single sample polarization filtering method for ground wave polarimetric radar.
文摘Ground penetrating radar (GPR) is a remote sensing technique used to obtain information on subsurface features from data collected over the surface. We propose an automatic algorithm for estimating object depth using f-k migration and velocity scanning methods in a homogeneous medium. To improve the accuracy of the algorithm, the formula used to calculate the GPR valid lateral aperture is also presented. Experimental results show that the relative estimating error of depth is as low as 5% in a homogeneous medium.
文摘Using super resolution direction of arrival(DOA) estimation algorithm to reduce the resolution angle is an effective method for passive radar seeker(PRS) to antagonize non-coherent radar decoy.Considering the power and correlation property between radar and non-coherent decoy,an improved subspace DOA estimation method based on traditional subspace algorithm is proposed.Because this new method uses the invariance property of noise subspace,compared with traditional MUSIC algorithm,it shows not only better resolution in condition of closely spaced sources,but also superior performance in case of different power or partially correlated sources.Using this new method,PRS can distinguish radar and non-coherent decoy with good performance.Both the simulation result and the experimental data confirm the performance of the method.
文摘A new method, SVD-TLS extending Prony algorithm, is introduced for extracting UWB radar target features. The method is a modified classical Prony method based on singular value decomposition and total least squares that can improve robust for spectrum estimation. Simulation results show that poles and residuum of target echo can be extracted effectively using this method, and at the same time, random noises can be restrained to some degree. It is applicable for target feature extraction such as UWB radar or other high resolution range radars.
文摘The polarization filter using three orthogonal linear polarization antennas can suppress more disturbances than the polarization filter using two orthogonal linear polarization antennas in HF ground wave radar. But the algorithm of the threedimension filter is relatively complicated and not suitable for real-time processing. It can't use linear and nonlinear polarization vector translation technique directly. A modified polarization filter which is simple and has same suppressing ability as the three-dimension polarization filter is given. It only has half parameters of the primary one. Some problems about estimation of polarization parameters and selection of disturbances are discussed. A method of holding the phase of radar backscatter signal constantly is put forward so that unstationary disturbance signal can be processed.