期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
基于注意力和挤压-激励Inception的双分支合成语音检测
1
作者 王晗 赵腊生 +2 位作者 张强 程银清 邱泽鹏 《计算机应用》 CSCD 北大核心 2024年第10期3217-3222,共6页
合成语音攻击给人们的生活带来巨大的威胁。为了解决现有模型从冗余信息中提取关键信息能力不足和单一模型无法综合利用多检测模型优势的问题,提出一种基于注意力和挤压-激励(SE)模块Inception(SE-Inc)的双分支(Dual-ABIB)合成语音检测... 合成语音攻击给人们的生活带来巨大的威胁。为了解决现有模型从冗余信息中提取关键信息能力不足和单一模型无法综合利用多检测模型优势的问题,提出一种基于注意力和挤压-激励(SE)模块Inception(SE-Inc)的双分支(Dual-ABIB)合成语音检测模型。首先,基于SincNet(Sinc-based convolutional neural Network)提取的初始特征图训练注意力分支合成语音检测模型,并输出注意力图;其次,将注意力图和初始特征图相乘后再叠加,并将结果作为SE-Inc分支的输入进行训练;最后,通过决策级加权融合处理2个分支获得的分类分数,从而实现合成语音检测。实验结果表明,所提模型在参数量为539×10^(3)的情况下,在ASVspoof2019数据集上获得了0.0332的最小串联检测代价函数(mint-DCF)和1.15%的等错误率(EER);与SE-ResABNet(Squeeze-Excitation ResNet Attention Branch Network)相比,所提模型在参数量仅为它的56%的情况下,min t-DCF和EER分别下降了34.5%和39.2%;同时,在ASVspoof2015和ASVspoof2021数据集上所提模型表现了更好的泛化能力。以上结果验证了所提模型能够在参数量较小的情况下,获得更低的min t-DCF和EER。 展开更多
关键词 注意力机制 挤压-激励模块 双分支 合成语音检测 决策级融合
在线阅读 下载PDF
基于二次分解时频图和SE-DSMC-BSA的轻量化有载分接开关机械故障识别方法
2
作者 李思奇 夏卯 +4 位作者 鲁思兆 毕贵红 黄一超 阮彦俊 李良创 《振动与冲击》 北大核心 2025年第11期268-279,308,共13页
有载分接开关(on-load tap-changer,OLTC)是有载调压变压器中唯一可动的部件,其频繁切换易导致机械故障。为了实现OLTC机械状态的在线监测,文中提出一种结合二次分解时频图、深度可分离多尺度卷积(depthwise separable multiscale convo... 有载分接开关(on-load tap-changer,OLTC)是有载调压变压器中唯一可动的部件,其频繁切换易导致机械故障。为了实现OLTC机械状态的在线监测,文中提出一种结合二次分解时频图、深度可分离多尺度卷积(depthwise separable multiscale convolution,DSMC)、挤压-激励(squeeze-excitation,SE)注意力机制和广播自注意力(broadcast self-attention,BSA)机制的轻量化OLTC故障识别方法。首先,建立OLTC故障模拟试验平台获取振动信号。在此基础上,引入二次分解和Hilbert变换,将两次分解的分量全部转换为时频图。然后,利用SE-DSMC对时频图进行多尺度的特征提取,并进行通道特征增强。最后,引入BSA对全局特征进行提取,以提升故障识别的准确率。与现有方法相比,该方法特别是在小样本情况下具有识别速度快、准确率高和轻量化等优势。 展开更多
关键词 有载分接开关(OLTC) 故障识别 二次分解 挤压-激励(SE) 深度可分离多尺度卷积(DSMC) 广播自注意力(BSA) 轻量化
在线阅读 下载PDF
基于“残差-挤压激励”深度混合卷积网络的土地利用分类 被引量:2
3
作者 王春阳 张英杰 +3 位作者 李长春 芦碧波 张合兵 吴喜芳 《农业工程学报》 EI CAS CSCD 北大核心 2022年第1期305-313,共9页
土地利用变化的监测需要高精度的土地利用分类图,遥感技术的发展为这一工作提供了便利。然而,传统分类方法往往无法针对性的利用影像中的信息,其分类结果中地物边缘信息模糊,分类精度不高且噪声较大,难以满足土地变化监测的需要。该研... 土地利用变化的监测需要高精度的土地利用分类图,遥感技术的发展为这一工作提供了便利。然而,传统分类方法往往无法针对性的利用影像中的信息,其分类结果中地物边缘信息模糊,分类精度不高且噪声较大,难以满足土地变化监测的需要。该研究针对传统方法分类结果不理想的问题,提出一种基于“残差-挤压激励”单元的混合卷积神经网络模型,采用膨胀卷积层对影像进行“光谱-空间”特征提取,并引入“残差-挤压激励”单元,实现特征重用的同时,选择性的强调信息性特征,对噪声性特征进行抑制,最后对得到的特征进行整合实现对遥感影像的分类。该研究提出的模型与k-最邻近算法(K-Nearest Neighbor,KNN)、支持向量机(Support Vector Machine,SVM)、二维卷积网络(2D-Convolutional Neural Network, 2D-CNN)以及混合卷积网络(HybridSN)相比,在试验数据集上总体精度分别提高了11.15个百分点、11.18个百分点、0.06个百分点和2.46个百分点。且有效减少了地物边缘信息的损失,验证了该方法的有效性。此外,基于该方法分类结果统计出的耕地面积与试验区真实耕地面积仅相差0.77%,误差绝对值远低于其他分类方法。 展开更多
关键词 土地利用 影像 分类 残差-挤压激励 混合卷积网络 特征提取
在线阅读 下载PDF
融合卷积神经网络和注意力机制的负荷识别方法 被引量:1
4
作者 赵毅涛 李钊 +3 位作者 刘兴龙 骆钊 王钢 沈鑫 《电力工程技术》 北大核心 2025年第1期227-235,共9页
对居民住宅进行非侵入式负荷监测(non-intrusive load monitoring,NILM)是智能电网用户需求侧的重要研究内容,居民负荷的能耗分析和用电管理是实现节能减排、可持续发展的关键环节。针对传统算法识别性能差、难以适应当下复杂用电环境... 对居民住宅进行非侵入式负荷监测(non-intrusive load monitoring,NILM)是智能电网用户需求侧的重要研究内容,居民负荷的能耗分析和用电管理是实现节能减排、可持续发展的关键环节。针对传统算法识别性能差、难以适应当下复杂用电环境的问题,文中从增强分类算法特征提取性能的优化思路出发,提出融合卷积神经网络(convolutional neural network,CNN)和自注意力机制的NILM负荷识别方法。首先,采集8种不同家用电器的电力数据,建立U-I轨迹曲线数据库;其次,采用挤压-激励网络(squeeze-and-excitation network,SENet)注意力机制提升CNN的特征聚合能力,完成对不同电器U-I轨迹曲线的特征提取和负荷识别;最后,对私有数据集和PLAID数据集进行测试,算例结果表明,所提方法在不同运行场景下均具有较高的识别准确率和较好的泛化性能。 展开更多
关键词 非侵入式负荷监测(NILM) 负荷识别 卷积神经网络(CNN) 挤压-激励网络(SENet) 注意力机制 特征提取 U-I轨迹
在线阅读 下载PDF
基于改进Deformable DETR的无人机视频流车辆目标检测算法 被引量:4
5
作者 江志鹏 王自全 +4 位作者 张永生 于英 程彬彬 赵龙海 张梦唯 《计算机工程与科学》 CSCD 北大核心 2024年第1期91-101,共11页
针对无人机视频流检测中小目标数量多、因图像传输质量较低而导致的上下文语义信息不充分、传统算法融合特征推理速度慢、数据集类别样本不均衡导致的训练效果差等问题,提出一种基于改进Deformable DETR的无人机视频流车辆目标检测算法... 针对无人机视频流检测中小目标数量多、因图像传输质量较低而导致的上下文语义信息不充分、传统算法融合特征推理速度慢、数据集类别样本不均衡导致的训练效果差等问题,提出一种基于改进Deformable DETR的无人机视频流车辆目标检测算法。在模型结构方面,该算法设计了跨尺度特征融合模块以增大感受野,提升小目标检测能力,并采用针对object_query的挤压-激励模块提升关键目标的响应值,减少重要目标的漏检与错检率;在数据处理方面,使用了在线困难样本挖掘技术,改善数据集中类别样本分布不均的问题。在UAVDT数据集上进行了实验,实验结果表明,改进后的算法相较于基线算法在平均检测精度上提升了1.5%,在小目标检测精度上提升了0.8%,并在保持参数量较少增长的情况下,维持了原有的检测速度。 展开更多
关键词 Deformable DETR 目标检测 跨尺度特征融合模块 object query挤压-激励 在线难样本挖掘
在线阅读 下载PDF
基于SE-DSCNN的MMC开关管故障诊断方法 被引量:11
6
作者 曾昭瑢 何怡刚 《电力自动化设备》 EI CSCD 北大核心 2022年第5期104-111,共8页
为了实现模块化多电平变换器(MMC)子模块开关管的故障诊断,提出了一种基于挤压-激励模块的深度可分离卷积神经网络(SE-DSCNN)。该网络直接利用原始电容电压数据,不需要任何的特征提取算法,能够自动提取隐藏在原始数据中的深层特征,结合... 为了实现模块化多电平变换器(MMC)子模块开关管的故障诊断,提出了一种基于挤压-激励模块的深度可分离卷积神经网络(SE-DSCNN)。该网络直接利用原始电容电压数据,不需要任何的特征提取算法,能够自动提取隐藏在原始数据中的深层特征,结合挤压-激励模块以突出通道域中具有代表性的特征,利用深度可分离卷积(DSC)来减少网络的计算量。利用滑动时间窗口将数据分段并归一化后输入提前训练好的最优模型中,模型输出预测标签。通过与其他人工特征提取方法及深度学习方法进行对比,结果表明模型参数量比具有相同卷积层数的标准卷积神经网络(CNN)减少了70.92%左右。所提方法在已有样本片段上的分类准确率及不同故障时期的诊断正确率均达99%及以上,诊断单个样本片段所需的时间约为0.34 ms,不但能区分故障早期的耦合性特征,还能实现准确、可靠、高效、快速的故障诊断。 展开更多
关键词 MMC 开关管故障 挤压-激励模块 深度可分离卷积神经网络 故障诊断
在线阅读 下载PDF
基于深度残差长短记忆网络交通流量预测算法 被引量:13
7
作者 刘世泽 秦艳君 +5 位作者 王晨星 苏琳 柯其学 罗海勇 孙艺 王宝会 《计算机应用》 CSCD 北大核心 2021年第6期1566-1572,共7页
针对多步交通流量预测任务中时间空间特征提取效果不佳和预测未来时间交通流量精度低的问题,提出一种基于长短时记忆(LSTM)网络、卷积残差网络和注意力机制的融合模型。首先,利用一种基于编解码器的架构,通过在编解码器中加入LSTM网络... 针对多步交通流量预测任务中时间空间特征提取效果不佳和预测未来时间交通流量精度低的问题,提出一种基于长短时记忆(LSTM)网络、卷积残差网络和注意力机制的融合模型。首先,利用一种基于编解码器的架构,通过在编解码器中加入LSTM网络来挖掘不同尺度的时间域特征;其次,构建基于注意力机制挤压激励(SE)模块的卷积残差网络嵌入到LSTM网络结构中,从而挖掘交通流量数据中的空间域特征;最后,将编码器中获得的隐状态下的信息输入到解码器中,实现高精度多步交通流量的预测。基于真实交通数据进行实验测试和分析,实验结果表明,相较于原始的基于图卷积的模型,所提模型在北京和纽约两个交通流量公开数据集上的均方根误差(RMSE)分别获得了1.622和0.08的下降。所提模型能够高效且精确地对交通流量作出预测。 展开更多
关键词 时空数据挖掘 编解码器 长短期记忆 挤压-激励模块 空间注意力
在线阅读 下载PDF
基于原始波形的端到端阿尔茨海默症检测方法 被引量:1
8
作者 陈旭初 张卫强 马勇 《电子学报》 EI CAS CSCD 北大核心 2023年第12期3582-3590,共9页
阿尔茨海默症(Alzheimer’s Disease,AD)是一种退行性疾病,随着病情加重,患者的语言能力逐渐减弱.目前已经有研究者使用梅尔谱图、梅尔频率倒谱系数(Mel Frequency Cepstral Coefficient,MFCC)等声学特征对阿尔茨海默症患者和健康人进... 阿尔茨海默症(Alzheimer’s Disease,AD)是一种退行性疾病,随着病情加重,患者的语言能力逐渐减弱.目前已经有研究者使用梅尔谱图、梅尔频率倒谱系数(Mel Frequency Cepstral Coefficient,MFCC)等声学特征对阿尔茨海默症患者和健康人进行分类,但是对于使用神经网络从原始波形提取特征进行阿尔茨海默症检测还缺少进一步的探索.本文提出一种基于原始波形的端到端阿尔茨海默症检测方法.该方法使用一维卷积从原始波形中提取时间维度特征,并使用含有膨胀卷积的残差块提取更复杂的特征.为进一步提高性能,在残差块中引入挤压-激励模块.在全国人机语音通讯学术会议(National Conference on Man-Machine Speech Communication,NCMMSC)2021 AD数据集上,本文提出的模型在长音频测试集、短音频测试集分别达到了86.55%和81.35%的准确率,比基线系统分别提高了6.75%、7.35%.在INTERSPEECH2020 ADReSS数据集上,模型的准确率为66.67%,比基线系统提高4.17%. 展开更多
关键词 阿尔茨海默症 语音检测 残差块 挤压-激励模块 端到端
在线阅读 下载PDF
结合SE与BiSRU的Unet的音乐源分离方法 被引量:5
9
作者 张瑞峰 白金桐 +1 位作者 关欣 李锵 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2021年第11期106-115,134,共11页
音乐源分离在音乐信息检索领域有着重要的研究价值。传统音乐源分离方法存在依赖假设、模型复杂度有限、表示能力不足等问题。能应对这些问题的时域深度学习端到端网络模型训练耗时长,且分离性能有待提升。为进一步改善时域端到端分离... 音乐源分离在音乐信息检索领域有着重要的研究价值。传统音乐源分离方法存在依赖假设、模型复杂度有限、表示能力不足等问题。能应对这些问题的时域深度学习端到端网络模型训练耗时长,且分离性能有待提升。为进一步改善时域端到端分离模型的表示能力和计算效率,在目前时域分离性能最优的Demucs模型基础上进行改进,提出了一种端对端网络Unet-SE-BiSRU。该模型在广义编码层和解码层中引入了注意力机制,采用挤压-激励块(SE)根据待分离音频的种类有选择地提取特征;在一维卷积后增加组归一化,以应对在学习过程中可能出现的梯度爆炸或梯度消失问题;将双向长短期记忆网络改进为双向简单循环单元(BiSRU),进一步提高了学习的并行性,且降低了模型参数量。实验结果表明,改进后的网络模型的信噪比指标提升了0.34 dB,在目前检索到的文献的时域端对端方法中取得了最好的分离性能,并且训练时间缩短为源模型的2/5。 展开更多
关键词 音乐源分离 U型网络 时域端到端分离模型 简单循环单元 挤压-激励 组归一化
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部