In this article, we obtain some results about the mean curvature integrals of the parallel body of a convex set in R^n. These mean curvature integrals are generalizations of the Santalo's results.
Let M be a compact convex hypersurface of class C2, which is assumed to bound a nonempty convex body K in the Euclidean space Rn and H be the mean curvature of M. We obtain a lower bound of the total square of mean cu...Let M be a compact convex hypersurface of class C2, which is assumed to bound a nonempty convex body K in the Euclidean space Rn and H be the mean curvature of M. We obtain a lower bound of the total square of mean curvature fM H2dA The bound is the Minkowski quermassintegral of the convex body K. The total square of mean curvature attains the lower bound when M is an (n - 1)-sphere.展开更多
基金Supported in part by NNSFC(10671159)Hong Kong Qiu Shi Science and Technologies Research Foundation
文摘In this article, we obtain some results about the mean curvature integrals of the parallel body of a convex set in R^n. These mean curvature integrals are generalizations of the Santalo's results.
文摘Let M be a compact convex hypersurface of class C2, which is assumed to bound a nonempty convex body K in the Euclidean space Rn and H be the mean curvature of M. We obtain a lower bound of the total square of mean curvature fM H2dA The bound is the Minkowski quermassintegral of the convex body K. The total square of mean curvature attains the lower bound when M is an (n - 1)-sphere.