The high variability of shock in terrorist attacks poses a threat to people's lives and properties,necessitating the development of more effective protective structures.This study focuses on the angle gradient and...The high variability of shock in terrorist attacks poses a threat to people's lives and properties,necessitating the development of more effective protective structures.This study focuses on the angle gradient and proposes four different configurations of concave hexagonal honeycomb structures.The structures'macroscopic deformation behavior,stress-strain relationship,and energy dissipation characteristics are evaluated through quasi-static compression and Hopkinson pressure bar impact experiments.The study reveals that,under varying strain rates,the structures deform starting from the weak layer and exhibit significant interlayer separation.Additionally,interlayer shear slip becomes more pronounced with increasing strain rate.In terms of quasi-static compression,symmetric gradient structures demonstrate superior energy absorption,particularly the symmetric negative gradient structure(SNG-SMS)with a specific energy absorption of 13.77 J/cm~3.For dynamic impact,unidirectional gradient structures exhibit exceptional energy absorption,particularly the unidirectional positive gradient honeycomb structure(UPG-SML)with outstanding mechanical properties.The angle gradient design plays a crucial role in determining the structure's stability and deformation mode during impact.Fewer interlayer separations result in a more pronounced negative Poisson's ratio effect and enhance the structure's energy absorption capacity.These findings provide a foundation for the rational design and selection of seismic protection structures in different strain rate impact environments.展开更多
This paper re-evaluates recently published quasi-static tests on laser-welded thin-walled steel structures in order to discuss the fundamental challenges in collision simulations based on finite element analysis.Clamp...This paper re-evaluates recently published quasi-static tests on laser-welded thin-walled steel structures in order to discuss the fundamental challenges in collision simulations based on finite element analysis.Clamped square panels were considered,with spherical indenter positioned at the mid-span of the stiffeners and moved along this centerline in order to change the load-carrying mechanism of the panels.Furthermore,the use of panels with single-sided flat bar stiffening and web-core sandwich panels enabled the investigation of the effect of structural topology on structural behavior and strength.The changes in loading position and panel topology resulted in different loading,structural and material gradients.In web-core panels,these three gradients occur at the same locations making the panel global responses sensitive for statistical variations and the failure process time-dependent.In stiffened panel with reduced structural gradient,this sensitivity and time-dependency in failure process is not observed.These observations set challenges to numerical simulations due to spatial and temporal discretization as well as the observed microrotation,which is beyond the currently used assumptions of classical continuum mechanics.Therefore,finally,we discuss the potential of non-classical continuum mechanics as remedy to deal with these phenomena and provide a base for necessary development for future.展开更多
The exploration of Mars would heavily rely on Martian rocks mechanics and engineering technology.As the mechanical property of Martian rocks is uncertain,it is of utmost importance to predict the probability distribut...The exploration of Mars would heavily rely on Martian rocks mechanics and engineering technology.As the mechanical property of Martian rocks is uncertain,it is of utmost importance to predict the probability distribution of Martian rocks mechanical property for the success of Mars exploration.In this paper,a fast and accurate probability distribution method for predicting the macroscale elastic modulus of Martian rocks was proposed by integrating the microscale rock mechanical experiments(micro-RME),accurate grain-based modeling(AGBM)and upscaling methods based on reliability principles.Firstly,the microstructure of NWA12564 Martian sample and elastic modulus of each mineral were obtained by micro-RME with TESCAN integrated mineral analyzer(TIMA)and nanoindentation.The best probability distribution function of the minerals was determined by Kolmogorov-Smirnov(K-S)test.Secondly,based on best distribution function of each mineral,the Monte Carlo simulations(MCS)and upscaling methods were implemented to obtain the probability distribution of upscaled elastic modulus.Thirdly,the correlation between the upscaled elastic modulus and macroscale elastic modulus obtained by AGBM was established.The accurate probability distribution of the macroscale elastic modulus was obtained by this correlation relationship.The proposed method can predict the probability distribution of Martian rocks mechanical property with any size and shape samples.展开更多
In this article,the experimental and finite element analysis is utilized to investigate the quasi-static compression features of sandwich constructions built with tapered tubes.3D printing technology was utilized to c...In this article,the experimental and finite element analysis is utilized to investigate the quasi-static compression features of sandwich constructions built with tapered tubes.3D printing technology was utilized to create the hollow centers of the tapering tubes,with and without corrugations.The results demonstrate that the energy absorption(EA)and specific energy absorption(SEA)of the single corrugated tapered tube sandwich are 51.6% and 19.8% higher,respectively,than those of the conical tube sandwich.Furthermore,the results demonstrate that energy absorbers can benefit from corrugation in order to increase their efficiency.Additionally,the tapered corrugated tubes'resistance to oblique impacts was studied.Compared to a straight tube,the tapered tube is more resistant to oblique loads and has a lower initial peak crushing force(PCF),according to numerical simulations.After conducting a parametric study,it was discovered that the energy absorption performance of the sandwich construction is significantly affected by the amplitude,number of corrugations,and wall thickness.EA and SEA of DTS with corrugation number of 8 increased by 17.4%and 29.6%,respectively,while PCF decreased by 9.2% compared to DTS with corrugation number of 10.展开更多
This paper presents the first-ever investigation of Menger fractal cubes'quasi-static compression and impact behaviour.Menger cubes with different void ratios were 3D printed using polylactic acid(PLA)with dimensi...This paper presents the first-ever investigation of Menger fractal cubes'quasi-static compression and impact behaviour.Menger cubes with different void ratios were 3D printed using polylactic acid(PLA)with dimensions of 40 mm×40 mm×40 mm.Three different orders of Menger cubes with different void ratios were considered,namely M1 with a void ratio of 0.26,M2 with a void ratio of 0.45,and M3with a void ratio of 0.60.Quasi-static Compression tests were conducted using a universal testing machine,while the drop hammer was used to observe the behaviour under impact loading.The fracture mechanism,energy efficiency and force-time histories were studied.With the structured nature of the void formation and predictability of the failure modes,the Menger geometry showed some promise compared to other alternatives,such as foams and honeycombs.With the increasing void ratio,the Menger geometries show force-displacement behaviour similar to hyper-elastic materials such as rubber and polymers.The third-order Menger cubes showed the highest energy absorption efficiency compared to the other two geometries in this study.The findings of the present work reveal the possibility of using additively manufactured Menger geometries as an energy-efficient system capable of reducing the transmitting force in applications such as crash barriers.展开更多
The order-of-addition experiments are widely used in many fields,including food and industrial production,but the relative research under prior constraints is limited.The purpose of this paper is to select an optimal ...The order-of-addition experiments are widely used in many fields,including food and industrial production,but the relative research under prior constraints is limited.The purpose of this paper is to select an optimal sequence under the restriction that component i is added before component j,while it is unachievable to compare all sequences when the number of components m is large.To achieve this,a constrained PWO model is first provided,and then the D-optimal designs for order-of addition experiments with minimal-points via the modified threshold accepting algorithm is established.The effectiveness of the proposed method is demonstrated through a job scheduling problem with a prior constraint for teaching cases.展开更多
This study presents the ballistic limit velocity of small caliber projectiles against SS400 steel plate derived from live-fire ballistic experiments. Four different small caliber projectiles were tested against SS400 ...This study presents the ballistic limit velocity of small caliber projectiles against SS400 steel plate derived from live-fire ballistic experiments. Four different small caliber projectiles were tested against SS400 steel plates of 9 mm, 10 mm, and 12 mm thicknesses. The ballistic limit velocity was calculated using two standard methods, MIL-STD-662F and NIJ-STD-0101.06, and additionally using a support vector machine algorithm. The results show a linear relationship between the plate thickness and ballistic limit velocity. Further, the relative penetration performance among five different small caliber projectiles was analyzed using the Penetration Performance Ratio(PPR) introduced in this study, which suggests the potential of PPR to predict the ballistic limit velocity of other untested materials and/or different projectiles.展开更多
This study aims to elucidate the dynamic evolution mechanism of the fracturing fracture system during the exploration and development of complex oil and gas reservoirs.By integrating methods of rock mechanical testing...This study aims to elucidate the dynamic evolution mechanism of the fracturing fracture system during the exploration and development of complex oil and gas reservoirs.By integrating methods of rock mechanical testing,logging calculation,and seismic inversion technology,we obtained the current insitu stress characteristics of a single well and rock mechanical parameters.Simultaneously,significant controlling factors of rock mechanical properties were analyzed.Subsequently,by coupling hydraulic fracturing physical experiments with finite element numerical simulation,three different fracturing models were configured:single-cluster,double-cluster,and triple-cluster perforations.Combined with acoustic emission technology,the fracture initiation mode and evolution characteristics during the loading process were determined.The results indicate the following findings:(1)The extension direction and length of the fracture are significantly controlled by the direction of the maximum horizontal principal stress.(2)Areas with poor cementation and compactness exhibit complex fracture morphology,prone to generating network fractures.(3)The interlayer development of fracturing fractures is controlled by the strata occurrence.(4)Increasing the displacement of fracturing fluid enlarges the fracturing fracture length and height.This research provides theoretical support and effective guidance for hydraulic fracturing design in tight oil and gas reservoirs.展开更多
Sloshing experiment is crucial to determine the reaction performance of regeneration columns on an offshore floating platform.A novel type of column motion simulating device and a Marine Predator Algorithm-based Slidi...Sloshing experiment is crucial to determine the reaction performance of regeneration columns on an offshore floating platform.A novel type of column motion simulating device and a Marine Predator Algorithm-based Sliding Mode Controller(MPA-SMC)are proposed for such sloshing experiments.The simulator consists of a Stewart platform and a steel framework.The Stewart platform is located at the column's center of gravity(CoG)and supported by the steel framework.The platform's hydraulic servo system is controlled by a sliding mode controller with parameters optimized by MPA to improve robustness and precision.A numerical sloshing experiment is conducted using the proposed device and controller.The results show that the novel motion simulator has lower torque during the column sloshes,and the proposed controller performs better than a well-tuned PID controller in terms of target tracking precision and anti-interference capability.展开更多
The high temperature and high pressure visualization pressure-volume-temperature(PVT)experiments of different gas media-crude oil were carried using the interface disappearance method.There are two miscible temperatur...The high temperature and high pressure visualization pressure-volume-temperature(PVT)experiments of different gas media-crude oil were carried using the interface disappearance method.There are two miscible temperature domains in the miscibility of CO_(2)-crude oil during heating process under constant pressure.Under the experiment pressure of 15 MPa,when the temperature is less than 140℃,the miscible zone shows liquid phase characteristics,and increasing the temperature inhibits the miscible process;when the temperature is greater than 230℃,the miscible zone tends to show gas phase characteristics,and increasing the temperature is conducive to the miscibility formation.Under a certain pressure,with the increase of temperature,the miscibility of flue gas,nitrogen and crude oil is realized.When the temperature is low,the effect of CO_(2) on promoting miscibility is obvious,and the order of miscible temperature of gas medium and crude oil is N_(2)>flue gas>CO_(2);however,when the temperature is high,the effect of CO_(2) on promoting miscibility gradually decreases,and the miscible temperature of N_(2) and crude oil is close to that of flue gas.The miscibility is dominated by the distillation and volatilization of light components of crude oil.There are many light hydrocarbon components in the gas phase at phase equilibrium,and the miscible zone is characterized by gas phase.展开更多
Most of the existing studies on tunnel blast wave are based on spherical or grouped charges,however,conventional weapons are mostly cylindrical rather than spherical.In order to analyze the impact of cylindrical charg...Most of the existing studies on tunnel blast wave are based on spherical or grouped charges,however,conventional weapons are mostly cylindrical rather than spherical.In order to analyze the impact of cylindrical charges on the tunnel blast wave loads and to develop a quantitative calculation method,this study carried out experimental and numerical research.Initially,external explosion experiments were conducted using both 35 kg spherical charges and cylindrical charges with aspect ratio of 4.8 at two different distances from the tunnel entrance.Comparative analysis of the blast wave parameters in the tunnel revealed that the explosive equivalent of the cylindrical charges was significantly higher than that of the spherical charges.To address this,an equivalent coefficient k based on the spherical charges was proposed for the cylindrical charges.Subsequently,numerical simulations were conducted for the experimental conditions,and the numerical simulation results match the experiments well.Through numerical calculations,the reliability of the equivalent coefficient k under the experimental conditions was verified,and comparison analysis indicated that the explosion energy of cylindrical charges spreads more radially,resulting in more explosion energy entering the tunnel,which is the fundamental reason for the increase in tunnel blast wave loads.Additionally,analyzing the explosion energy ratio entering the tunnel is an effective method for calculating the equivalent coefficient k.Finally,through more than one hundred sets of numerical calculation results,the impact of the proportional distance l and the ratio of charge mass to the tunnel cross-section dimension 4 on the equivalence coefficients k was investigated.An empirical formula for the equivalence coefficient k was derived through fitting,and the accuracy of the formula was validated through literature experimental results.The research findings of this paper will provide valuable guidance for the calculation of blast wave loads in tunnel.展开更多
A mechanical model of the quasi-static interface of a mode I crack between a rigid and a pressure-sensitive viscoelastic material was established to investigate the mechanical characteristic of ship-building engineeri...A mechanical model of the quasi-static interface of a mode I crack between a rigid and a pressure-sensitive viscoelastic material was established to investigate the mechanical characteristic of ship-building engineering hi-materials. In the stable growth stage, stress and strain have the same singularity, ie (σ, ε) ∝ r^-1/(n-1). The variable-separable asymptotic solutions of stress and strain at the crack tip were obtained by adopting Airy's stress function and the numerical results of stress and strain in the crack-tip field were obtained by the shooting method. The results showed that the near-tip fields are mainly governed by the power-hardening exponent n and the Poisson ratio v of the pressure-sensitive material. The fracture criterion of mode I quasi-static crack growth in pressure-sensitive materials, according to the asymptotic analyses of the crack-tip field, can be viewed from the perspective of strain.展开更多
Due to global warming, the general circulation, underlying surfaces characteristics, and geophysical and meteorological elements all show evident secular trends. This paper points out that when calculating the correla...Due to global warming, the general circulation, underlying surfaces characteristics, and geophysical and meteorological elements all show evident secular trends. This paper points out that when calculating the correlation of two variables containing their own obvious secular trends, the interannual correlation characteristics between the two variables may be distorted (overestimated or underestimated). Numerical experiments in this paper show that if two variables have opposite secular trends, the correlation coefficient between the two variables is reduced (the positive correlation is underestimated, or the negative correlation is overestimated); and if the two variables have the same sign of secular trends, the correlation coefficient between the two variables is increased (the positive correlation is overestimated, or the negative correlation is underestimated). Numerical experiments also suggest that the effect of secular trends on the interannual correlation of the two variables is interchangeable, that is to say, as long as the values of the two trends are not changed, the two variables interchange their positions, and the effect of the secular trends on the interannual correlation coefficient of the two variables remains the same. If the two variables have the same-(opposite-) sign trends, the effect of secular trends on the interannal correlation coefficient is more (less) distinctive. A meteorological example is given.展开更多
In this paper, the mechanical behavior of acrylic polymers at elevated temperature was investigated. Four acrylic polymers were tested at high strain rate by using compression Hopkinson bar and at quasi-static strain ...In this paper, the mechanical behavior of acrylic polymers at elevated temperature was investigated. Four acrylic polymers were tested at high strain rate by using compression Hopkinson bar and at quasi-static strain rate by using an Instron servo hydraulic axial testing machine with the testing temperature from 218K to 393K. The results show that the mechanical property of acrylic polymers depends heavily on the testing temperature. The yield stress and Young's modulus were found to decrease with increasing temperature at low strain rate. At very low temperature, the materials display typical brittle fracture; however their plasticity improves remarkably at high temperatures. The predictions of the mechanical behavior including the effect of temperature and strain rate using a proposed theoretical model have a good agreement with experimental results.展开更多
A series of plane-strain physical model experiments are carried out to study the spatiotemporal evolution rule of rocks fracture surrounding gob-side roadway, which is subjected to the pressure induced by the mining p...A series of plane-strain physical model experiments are carried out to study the spatiotemporal evolution rule of rocks fracture surrounding gob-side roadway, which is subjected to the pressure induced by the mining process. The digital photogrammetry technology and large deformation analysis method are applied to measure the deformation and fracture of surrounding rocks. The experimental results indicate that the deformation and fracture of coal pillars are the cause to the instability and failure of the surrounding rocks. The spatiotemporal evolution rule of the rock deformation and fracture surrounding gob-side roadway is obtained. The coal pillar and the roof near coal pillar should be strengthened in support design. The engineering application results also can provide a useful guide that the combined support with wire meshes, beam, anchor bolt and cable is an effective method.展开更多
Sesquiterpanes are ubiquitous components of crude oils and ancient sediments.Liquid saturated hydrocarbons from simulated pyrolysis experiments on immature organic-rich mudstone collected from the Lower Cretaceous Hes...Sesquiterpanes are ubiquitous components of crude oils and ancient sediments.Liquid saturated hydrocarbons from simulated pyrolysis experiments on immature organic-rich mudstone collected from the Lower Cretaceous Hesigewula Sag were analyzed by gas chromatography-mass spectrometry(GC-MS).C14 bicyclic sesquiterpanes,namely,8β(H)-drimane,8β(H)-homodrimane,and 8 a(H)-homodrimane were detected and identified on basis of their diagnostic fragment ions(m/z123,179,193,and 207),and previously published mass spectra data,and these bicyclic sesquiterpanes presented relatively regular characteristics in their thermal evolution.The ratios 8β(H)-drimane/8β(H)-homodrimane,8β(H)-homodrimane/8 a(H)-homodrimane,and 8β(H)-drimane/8 a(H)-homodrimane all show a clear upward trend with increasing temperature below the temperature turning point.Thus,all these ratios can be used as evolution indexes of source rocks in the immature-lowmaturity stage.However,the last two ratios may be more suitable than the first ratio as valid parameters for measuring the extent of thermal evolution of organic matter in the immature-low-maturity stage because their change amplitude with increasing temperature is more obvious.展开更多
Radio frequency (RF) heating in the ion cyclotron range of frequencies (ICRF) is one of the primary auxiliary heating methods for EAST. The ICRF system provides 6 MW power in primary phase and will be capable of 1...Radio frequency (RF) heating in the ion cyclotron range of frequencies (ICRF) is one of the primary auxiliary heating methods for EAST. The ICRF system provides 6 MW power in primary phase and will be capable of 10 MW later. Three 1.5 MW ICRF systems in a fr@quency range of 25 MHz to 70 MHz have already been in operation. The ICRF heating launchers are designed to have two current straps with each driven by a RF power source of 1.5 MW. In this paper a brief introduction of the ICRF heating system capability in EAST and the preliminary results in EAST are presented.展开更多
Thermochemical sulfate reduction (TSR) in geological deposits can account for the accumulation of H2S in deep sour gas reservoirs. In this paper, thermal simulation experiments on the reaction of CH4-CaSO4 were carri...Thermochemical sulfate reduction (TSR) in geological deposits can account for the accumulation of H2S in deep sour gas reservoirs. In this paper, thermal simulation experiments on the reaction of CH4-CaSO4 were carried out using an autoclave at high temperatures and high pressures. The products were characterized with analytical methods including carbon isotope analysis. It is found that the reaction can proceed to produce H2S, H2O and CaCO3 as the main products. Based on the experimental results, the carbon kinetic isotope fractionation was investigated, and the value of Ki (kinetic isotope effect) was calculated. The results obtained in this paper can provide useful information to explain the occurrence of H2S in deep carbonate gas reservoirs.展开更多
In sensitivity experiments, the response is binary and each experimental unit has a critical stimulus level that cannot be observed directly. It is often of interest to estimate extreme quantiles of the distribution o...In sensitivity experiments, the response is binary and each experimental unit has a critical stimulus level that cannot be observed directly. It is often of interest to estimate extreme quantiles of the distribution of these critical stimulus levels over the tested products. For this purpose a new sequential scheme is proposed with some commonly used models. By using the bootstrap repeated-sampling principle, reasonable prior distributions based on a historic data set are specified. Then, a Bayesian strategy for the sequential procedure is provided and the estimator is given. Further, a high order approximation for such an estimator is explored and its consistency is proven. A simulation study shows that the proposed method gives superior performances over the existing methods.展开更多
In order to analyze the factors influencing sandstone mechanical compaction and its physical property evolution during compaction processes, simulation exper- iments on sandstone mechanical compaction were carried out...In order to analyze the factors influencing sandstone mechanical compaction and its physical property evolution during compaction processes, simulation exper- iments on sandstone mechanical compaction were carried out with a self-designed diagenetic simulation system. The experimental materials were modem sediments from dif- ferent sources, and the experiments were conducted under high temperature and high pressure. Results of the exper- iments show a binary function relation between primary porosity and mean size as well as sorting. With increasing overburden pressure during mechanical compaction, the evolution of porosity and permeability can be divided into rapid compaction at an early stage and slow compaction at a late stage, and the dividing pressure value of the two stages is about 12 MPa and the corresponding depth is about 600 m. In the slow compaction stage, there is a good exponential relationship between porosity and overburden pressure, while a good power function relationship exists between permeability and overburden pressure. There is also a good exponential relationship between porosity and permeability. The influence of particle size on sandstone mechanical compaction is mainly reflected in the slowcompaction stage, and the influence of sorting is mainly reflected in the rapid compaction stage. Abnormally high pressure effectively inhibits sandstone mechanical com- paction, and its control on sandstone mechanical com- paction is stronger than that of particle size and sorting. The influence of burial time on sandstone mechanical compaction is mainly in the slow compaction stage, and the porosity reduction caused by compaction is mainly con- trolled by average particle size.展开更多
基金financially supported by National Natural Science Foundation of China,China (Grant No.52022012)National Key R&D Program for Young Scientists of China,China (Grant No.2022YFC3080900)。
文摘The high variability of shock in terrorist attacks poses a threat to people's lives and properties,necessitating the development of more effective protective structures.This study focuses on the angle gradient and proposes four different configurations of concave hexagonal honeycomb structures.The structures'macroscopic deformation behavior,stress-strain relationship,and energy dissipation characteristics are evaluated through quasi-static compression and Hopkinson pressure bar impact experiments.The study reveals that,under varying strain rates,the structures deform starting from the weak layer and exhibit significant interlayer separation.Additionally,interlayer shear slip becomes more pronounced with increasing strain rate.In terms of quasi-static compression,symmetric gradient structures demonstrate superior energy absorption,particularly the symmetric negative gradient structure(SNG-SMS)with a specific energy absorption of 13.77 J/cm~3.For dynamic impact,unidirectional gradient structures exhibit exceptional energy absorption,particularly the unidirectional positive gradient honeycomb structure(UPG-SML)with outstanding mechanical properties.The angle gradient design plays a crucial role in determining the structure's stability and deformation mode during impact.Fewer interlayer separations result in a more pronounced negative Poisson's ratio effect and enhance the structure's energy absorption capacity.These findings provide a foundation for the rational design and selection of seismic protection structures in different strain rate impact environments.
基金The experimental program would not have been possible without the funding by the 100-Year Foundation of the Federation of Finnish Technology Industries and the Scientific Advisory Board for Defense.The analyses were carried out in project called Ultra Lightweight and Fracture Resistant Thin-Walled Structures through Optimization of Strain Paths,by the Academy of Finland(310828).This work was also supported by the Estonian Research Council grant PSG526.
文摘This paper re-evaluates recently published quasi-static tests on laser-welded thin-walled steel structures in order to discuss the fundamental challenges in collision simulations based on finite element analysis.Clamped square panels were considered,with spherical indenter positioned at the mid-span of the stiffeners and moved along this centerline in order to change the load-carrying mechanism of the panels.Furthermore,the use of panels with single-sided flat bar stiffening and web-core sandwich panels enabled the investigation of the effect of structural topology on structural behavior and strength.The changes in loading position and panel topology resulted in different loading,structural and material gradients.In web-core panels,these three gradients occur at the same locations making the panel global responses sensitive for statistical variations and the failure process time-dependent.In stiffened panel with reduced structural gradient,this sensitivity and time-dependency in failure process is not observed.These observations set challenges to numerical simulations due to spatial and temporal discretization as well as the observed microrotation,which is beyond the currently used assumptions of classical continuum mechanics.Therefore,finally,we discuss the potential of non-classical continuum mechanics as remedy to deal with these phenomena and provide a base for necessary development for future.
文摘The exploration of Mars would heavily rely on Martian rocks mechanics and engineering technology.As the mechanical property of Martian rocks is uncertain,it is of utmost importance to predict the probability distribution of Martian rocks mechanical property for the success of Mars exploration.In this paper,a fast and accurate probability distribution method for predicting the macroscale elastic modulus of Martian rocks was proposed by integrating the microscale rock mechanical experiments(micro-RME),accurate grain-based modeling(AGBM)and upscaling methods based on reliability principles.Firstly,the microstructure of NWA12564 Martian sample and elastic modulus of each mineral were obtained by micro-RME with TESCAN integrated mineral analyzer(TIMA)and nanoindentation.The best probability distribution function of the minerals was determined by Kolmogorov-Smirnov(K-S)test.Secondly,based on best distribution function of each mineral,the Monte Carlo simulations(MCS)and upscaling methods were implemented to obtain the probability distribution of upscaled elastic modulus.Thirdly,the correlation between the upscaled elastic modulus and macroscale elastic modulus obtained by AGBM was established.The accurate probability distribution of the macroscale elastic modulus was obtained by this correlation relationship.The proposed method can predict the probability distribution of Martian rocks mechanical property with any size and shape samples.
基金the grants from the National Natural Science Foundation of China(Nos.52078152 and 12002095)Guangzhou Government-University Union Fund(No.202201020532)。
文摘In this article,the experimental and finite element analysis is utilized to investigate the quasi-static compression features of sandwich constructions built with tapered tubes.3D printing technology was utilized to create the hollow centers of the tapering tubes,with and without corrugations.The results demonstrate that the energy absorption(EA)and specific energy absorption(SEA)of the single corrugated tapered tube sandwich are 51.6% and 19.8% higher,respectively,than those of the conical tube sandwich.Furthermore,the results demonstrate that energy absorbers can benefit from corrugation in order to increase their efficiency.Additionally,the tapered corrugated tubes'resistance to oblique impacts was studied.Compared to a straight tube,the tapered tube is more resistant to oblique loads and has a lower initial peak crushing force(PCF),according to numerical simulations.After conducting a parametric study,it was discovered that the energy absorption performance of the sandwich construction is significantly affected by the amplitude,number of corrugations,and wall thickness.EA and SEA of DTS with corrugation number of 8 increased by 17.4%and 29.6%,respectively,while PCF decreased by 9.2% compared to DTS with corrugation number of 10.
文摘This paper presents the first-ever investigation of Menger fractal cubes'quasi-static compression and impact behaviour.Menger cubes with different void ratios were 3D printed using polylactic acid(PLA)with dimensions of 40 mm×40 mm×40 mm.Three different orders of Menger cubes with different void ratios were considered,namely M1 with a void ratio of 0.26,M2 with a void ratio of 0.45,and M3with a void ratio of 0.60.Quasi-static Compression tests were conducted using a universal testing machine,while the drop hammer was used to observe the behaviour under impact loading.The fracture mechanism,energy efficiency and force-time histories were studied.With the structured nature of the void formation and predictability of the failure modes,the Menger geometry showed some promise compared to other alternatives,such as foams and honeycombs.With the increasing void ratio,the Menger geometries show force-displacement behaviour similar to hyper-elastic materials such as rubber and polymers.The third-order Menger cubes showed the highest energy absorption efficiency compared to the other two geometries in this study.The findings of the present work reveal the possibility of using additively manufactured Menger geometries as an energy-efficient system capable of reducing the transmitting force in applications such as crash barriers.
基金supported by National Natural Science Foundation of China(Grant Nos.11971204,12271270)Natural Science Foundation of Jiangsu Province of China(Grant No.BK20200108)the Zhongwu Youth Innovative Talent Program of Jiangsu University of Technology and the Third Level Training Object of the Sixth“333 Project”in Jiangsu Province。
文摘The order-of-addition experiments are widely used in many fields,including food and industrial production,but the relative research under prior constraints is limited.The purpose of this paper is to select an optimal sequence under the restriction that component i is added before component j,while it is unachievable to compare all sequences when the number of components m is large.To achieve this,a constrained PWO model is first provided,and then the D-optimal designs for order-of addition experiments with minimal-points via the modified threshold accepting algorithm is established.The effectiveness of the proposed method is demonstrated through a job scheduling problem with a prior constraint for teaching cases.
文摘This study presents the ballistic limit velocity of small caliber projectiles against SS400 steel plate derived from live-fire ballistic experiments. Four different small caliber projectiles were tested against SS400 steel plates of 9 mm, 10 mm, and 12 mm thicknesses. The ballistic limit velocity was calculated using two standard methods, MIL-STD-662F and NIJ-STD-0101.06, and additionally using a support vector machine algorithm. The results show a linear relationship between the plate thickness and ballistic limit velocity. Further, the relative penetration performance among five different small caliber projectiles was analyzed using the Penetration Performance Ratio(PPR) introduced in this study, which suggests the potential of PPR to predict the ballistic limit velocity of other untested materials and/or different projectiles.
基金supported by the Major Scientific and Technological Projects of CNPC under grant ZD2019-183-006the National Science and Technology Major Project of China(2016ZX05014002-006)the National Natural Science Foundation of China(42072234)。
文摘This study aims to elucidate the dynamic evolution mechanism of the fracturing fracture system during the exploration and development of complex oil and gas reservoirs.By integrating methods of rock mechanical testing,logging calculation,and seismic inversion technology,we obtained the current insitu stress characteristics of a single well and rock mechanical parameters.Simultaneously,significant controlling factors of rock mechanical properties were analyzed.Subsequently,by coupling hydraulic fracturing physical experiments with finite element numerical simulation,three different fracturing models were configured:single-cluster,double-cluster,and triple-cluster perforations.Combined with acoustic emission technology,the fracture initiation mode and evolution characteristics during the loading process were determined.The results indicate the following findings:(1)The extension direction and length of the fracture are significantly controlled by the direction of the maximum horizontal principal stress.(2)Areas with poor cementation and compactness exhibit complex fracture morphology,prone to generating network fractures.(3)The interlayer development of fracturing fractures is controlled by the strata occurrence.(4)Increasing the displacement of fracturing fluid enlarges the fracturing fracture length and height.This research provides theoretical support and effective guidance for hydraulic fracturing design in tight oil and gas reservoirs.
文摘Sloshing experiment is crucial to determine the reaction performance of regeneration columns on an offshore floating platform.A novel type of column motion simulating device and a Marine Predator Algorithm-based Sliding Mode Controller(MPA-SMC)are proposed for such sloshing experiments.The simulator consists of a Stewart platform and a steel framework.The Stewart platform is located at the column's center of gravity(CoG)and supported by the steel framework.The platform's hydraulic servo system is controlled by a sliding mode controller with parameters optimized by MPA to improve robustness and precision.A numerical sloshing experiment is conducted using the proposed device and controller.The results show that the novel motion simulator has lower torque during the column sloshes,and the proposed controller performs better than a well-tuned PID controller in terms of target tracking precision and anti-interference capability.
基金Supported by the Petro China Science and Technology Project(2023ZG18)。
文摘The high temperature and high pressure visualization pressure-volume-temperature(PVT)experiments of different gas media-crude oil were carried using the interface disappearance method.There are two miscible temperature domains in the miscibility of CO_(2)-crude oil during heating process under constant pressure.Under the experiment pressure of 15 MPa,when the temperature is less than 140℃,the miscible zone shows liquid phase characteristics,and increasing the temperature inhibits the miscible process;when the temperature is greater than 230℃,the miscible zone tends to show gas phase characteristics,and increasing the temperature is conducive to the miscibility formation.Under a certain pressure,with the increase of temperature,the miscibility of flue gas,nitrogen and crude oil is realized.When the temperature is low,the effect of CO_(2) on promoting miscibility is obvious,and the order of miscible temperature of gas medium and crude oil is N_(2)>flue gas>CO_(2);however,when the temperature is high,the effect of CO_(2) on promoting miscibility gradually decreases,and the miscible temperature of N_(2) and crude oil is close to that of flue gas.The miscibility is dominated by the distillation and volatilization of light components of crude oil.There are many light hydrocarbon components in the gas phase at phase equilibrium,and the miscible zone is characterized by gas phase.
文摘Most of the existing studies on tunnel blast wave are based on spherical or grouped charges,however,conventional weapons are mostly cylindrical rather than spherical.In order to analyze the impact of cylindrical charges on the tunnel blast wave loads and to develop a quantitative calculation method,this study carried out experimental and numerical research.Initially,external explosion experiments were conducted using both 35 kg spherical charges and cylindrical charges with aspect ratio of 4.8 at two different distances from the tunnel entrance.Comparative analysis of the blast wave parameters in the tunnel revealed that the explosive equivalent of the cylindrical charges was significantly higher than that of the spherical charges.To address this,an equivalent coefficient k based on the spherical charges was proposed for the cylindrical charges.Subsequently,numerical simulations were conducted for the experimental conditions,and the numerical simulation results match the experiments well.Through numerical calculations,the reliability of the equivalent coefficient k under the experimental conditions was verified,and comparison analysis indicated that the explosion energy of cylindrical charges spreads more radially,resulting in more explosion energy entering the tunnel,which is the fundamental reason for the increase in tunnel blast wave loads.Additionally,analyzing the explosion energy ratio entering the tunnel is an effective method for calculating the equivalent coefficient k.Finally,through more than one hundred sets of numerical calculation results,the impact of the proportional distance l and the ratio of charge mass to the tunnel cross-section dimension 4 on the equivalence coefficients k was investigated.An empirical formula for the equivalence coefficient k was derived through fitting,and the accuracy of the formula was validated through literature experimental results.The research findings of this paper will provide valuable guidance for the calculation of blast wave loads in tunnel.
基金Supported by Heilongjiang Province Foundation under Grant No.LC08C02
文摘A mechanical model of the quasi-static interface of a mode I crack between a rigid and a pressure-sensitive viscoelastic material was established to investigate the mechanical characteristic of ship-building engineering hi-materials. In the stable growth stage, stress and strain have the same singularity, ie (σ, ε) ∝ r^-1/(n-1). The variable-separable asymptotic solutions of stress and strain at the crack tip were obtained by adopting Airy's stress function and the numerical results of stress and strain in the crack-tip field were obtained by the shooting method. The results showed that the near-tip fields are mainly governed by the power-hardening exponent n and the Poisson ratio v of the pressure-sensitive material. The fracture criterion of mode I quasi-static crack growth in pressure-sensitive materials, according to the asymptotic analyses of the crack-tip field, can be viewed from the perspective of strain.
文摘Due to global warming, the general circulation, underlying surfaces characteristics, and geophysical and meteorological elements all show evident secular trends. This paper points out that when calculating the correlation of two variables containing their own obvious secular trends, the interannual correlation characteristics between the two variables may be distorted (overestimated or underestimated). Numerical experiments in this paper show that if two variables have opposite secular trends, the correlation coefficient between the two variables is reduced (the positive correlation is underestimated, or the negative correlation is overestimated); and if the two variables have the same sign of secular trends, the correlation coefficient between the two variables is increased (the positive correlation is overestimated, or the negative correlation is underestimated). Numerical experiments also suggest that the effect of secular trends on the interannual correlation of the two variables is interchangeable, that is to say, as long as the values of the two trends are not changed, the two variables interchange their positions, and the effect of the secular trends on the interannual correlation coefficient of the two variables remains the same. If the two variables have the same-(opposite-) sign trends, the effect of secular trends on the interannal correlation coefficient is more (less) distinctive. A meteorological example is given.
文摘In this paper, the mechanical behavior of acrylic polymers at elevated temperature was investigated. Four acrylic polymers were tested at high strain rate by using compression Hopkinson bar and at quasi-static strain rate by using an Instron servo hydraulic axial testing machine with the testing temperature from 218K to 393K. The results show that the mechanical property of acrylic polymers depends heavily on the testing temperature. The yield stress and Young's modulus were found to decrease with increasing temperature at low strain rate. At very low temperature, the materials display typical brittle fracture; however their plasticity improves remarkably at high temperatures. The predictions of the mechanical behavior including the effect of temperature and strain rate using a proposed theoretical model have a good agreement with experimental results.
基金supported by the National Natural Science Foundation of China (No. 51174197)the Major State Basic Research Development Program of China (No. 2014CB046905)+1 种基金State Key Laboratory for Geo Mechanics and Deep Underground Engineering (CUMT) (No. SKLGDUEK1503)the ‘Qing Lan’ Project of Jiangsu Province
文摘A series of plane-strain physical model experiments are carried out to study the spatiotemporal evolution rule of rocks fracture surrounding gob-side roadway, which is subjected to the pressure induced by the mining process. The digital photogrammetry technology and large deformation analysis method are applied to measure the deformation and fracture of surrounding rocks. The experimental results indicate that the deformation and fracture of coal pillars are the cause to the instability and failure of the surrounding rocks. The spatiotemporal evolution rule of the rock deformation and fracture surrounding gob-side roadway is obtained. The coal pillar and the roof near coal pillar should be strengthened in support design. The engineering application results also can provide a useful guide that the combined support with wire meshes, beam, anchor bolt and cable is an effective method.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41672117 and 41503034)the Hubei Provincial Natural Science Foundation of China (Project No. 2017CFA027)+1 种基金the Open Subject of Shandong Provincial Key Laboratory of Depositional Mineralization & Sedimentary Mineral (Baojun Liu Geoscience Science Foundation) (DMSM2017084)the Open Subject of the State Key Laboratory of Petroleum Resources and Prospecting (PRP/open-1509)
文摘Sesquiterpanes are ubiquitous components of crude oils and ancient sediments.Liquid saturated hydrocarbons from simulated pyrolysis experiments on immature organic-rich mudstone collected from the Lower Cretaceous Hesigewula Sag were analyzed by gas chromatography-mass spectrometry(GC-MS).C14 bicyclic sesquiterpanes,namely,8β(H)-drimane,8β(H)-homodrimane,and 8 a(H)-homodrimane were detected and identified on basis of their diagnostic fragment ions(m/z123,179,193,and 207),and previously published mass spectra data,and these bicyclic sesquiterpanes presented relatively regular characteristics in their thermal evolution.The ratios 8β(H)-drimane/8β(H)-homodrimane,8β(H)-homodrimane/8 a(H)-homodrimane,and 8β(H)-drimane/8 a(H)-homodrimane all show a clear upward trend with increasing temperature below the temperature turning point.Thus,all these ratios can be used as evolution indexes of source rocks in the immature-lowmaturity stage.However,the last two ratios may be more suitable than the first ratio as valid parameters for measuring the extent of thermal evolution of organic matter in the immature-low-maturity stage because their change amplitude with increasing temperature is more obvious.
基金supported by the ITER Relevant Foundation in China (No. 2010GB110000)supported partly by the Knowledge Innovation Program of the Chinese Academy of Sciences (No. Y05FCQ0126)supported in part by the JSPS-CAS Core-University program in the field of 'Plasma Physics and Nuclear Pusion'
文摘Radio frequency (RF) heating in the ion cyclotron range of frequencies (ICRF) is one of the primary auxiliary heating methods for EAST. The ICRF system provides 6 MW power in primary phase and will be capable of 10 MW later. Three 1.5 MW ICRF systems in a fr@quency range of 25 MHz to 70 MHz have already been in operation. The ICRF heating launchers are designed to have two current straps with each driven by a RF power source of 1.5 MW. In this paper a brief introduction of the ICRF heating system capability in EAST and the preliminary results in EAST are presented.
文摘Thermochemical sulfate reduction (TSR) in geological deposits can account for the accumulation of H2S in deep sour gas reservoirs. In this paper, thermal simulation experiments on the reaction of CH4-CaSO4 were carried out using an autoclave at high temperatures and high pressures. The products were characterized with analytical methods including carbon isotope analysis. It is found that the reaction can proceed to produce H2S, H2O and CaCO3 as the main products. Based on the experimental results, the carbon kinetic isotope fractionation was investigated, and the value of Ki (kinetic isotope effect) was calculated. The results obtained in this paper can provide useful information to explain the occurrence of H2S in deep carbonate gas reservoirs.
文摘In sensitivity experiments, the response is binary and each experimental unit has a critical stimulus level that cannot be observed directly. It is often of interest to estimate extreme quantiles of the distribution of these critical stimulus levels over the tested products. For this purpose a new sequential scheme is proposed with some commonly used models. By using the bootstrap repeated-sampling principle, reasonable prior distributions based on a historic data set are specified. Then, a Bayesian strategy for the sequential procedure is provided and the estimator is given. Further, a high order approximation for such an estimator is explored and its consistency is proven. A simulation study shows that the proposed method gives superior performances over the existing methods.
基金co-funded by the National Natural Science Foundation of China (Grant No.U1262203)the National Science and Technology Special Grant (Grant No.2011ZX05009003)+1 种基金the Fundamental Research Funds for the Central Universities (Grant No.14CX06013A)the Chinese Scholarship Council (No.201406450019)
文摘In order to analyze the factors influencing sandstone mechanical compaction and its physical property evolution during compaction processes, simulation exper- iments on sandstone mechanical compaction were carried out with a self-designed diagenetic simulation system. The experimental materials were modem sediments from dif- ferent sources, and the experiments were conducted under high temperature and high pressure. Results of the exper- iments show a binary function relation between primary porosity and mean size as well as sorting. With increasing overburden pressure during mechanical compaction, the evolution of porosity and permeability can be divided into rapid compaction at an early stage and slow compaction at a late stage, and the dividing pressure value of the two stages is about 12 MPa and the corresponding depth is about 600 m. In the slow compaction stage, there is a good exponential relationship between porosity and overburden pressure, while a good power function relationship exists between permeability and overburden pressure. There is also a good exponential relationship between porosity and permeability. The influence of particle size on sandstone mechanical compaction is mainly reflected in the slowcompaction stage, and the influence of sorting is mainly reflected in the rapid compaction stage. Abnormally high pressure effectively inhibits sandstone mechanical com- paction, and its control on sandstone mechanical com- paction is stronger than that of particle size and sorting. The influence of burial time on sandstone mechanical compaction is mainly in the slow compaction stage, and the porosity reduction caused by compaction is mainly con- trolled by average particle size.