A highly sensitive light-induced thermoelectric spectroscopy(LITES)sensor based on a multi-pass cell(MPC)with dense spot pattern and a novel quartz tuning fork(QTF)with low resonance frequency is reported in this manu...A highly sensitive light-induced thermoelectric spectroscopy(LITES)sensor based on a multi-pass cell(MPC)with dense spot pattern and a novel quartz tuning fork(QTF)with low resonance frequency is reported in this manuscript.An erbi-um-doped fiber amplifier(EDFA)was employed to amplify the output optical power so that the signal level was further enhanced.The optical path length(OPL)and the ratio of optical path length to volume(RLV)of the MPC is 37.7 m and 13.8 cm^(-2),respectively.A commercial QTF and a self-designed trapezoidal-tip QTF with low frequency of 9461.83 Hz were used as the detectors of the sensor,respectively.The target gas selected to test the performance of the system was acetylene(C2H2).When the optical power was constant at 1000 mW,the minimum detection limit(MDL)of the C2H2-LITES sensor can be achieved 48.3 ppb when using the commercial QTF and 24.6 ppb when using the trapezoid-al-tip QTF.An improvement of the detection performance by a factor of 1.96 was achieved after replacing the commer-cial QTF with the trapezoidal-tip QTF.展开更多
To investigate the effect of chlorine roasting on the migration and removal of trace elements in quartz lattice,firstly,an efficient pretreatment process,grinding–HCl washing–flotation–HF and HCl leaching,was used ...To investigate the effect of chlorine roasting on the migration and removal of trace elements in quartz lattice,firstly,an efficient pretreatment process,grinding–HCl washing–flotation–HF and HCl leaching,was used to remove the gangue minerals in quartz ore to obtain purified quartz for the preparation of high-purity quartz and the investigation of lattice impurities migration.The results showed that the high-purity quartz with total impurities less than 50μg/g could be obtained from purified quartz after being treated with chlorine at 1200°C.The variation of crystal structure and the lattice impurities migration of quartz during chlorine roasting were studied through in-situ XRD,TGA,SEM-EDS,ICP-MS,FT-IR and XPS analysis.It revealed that the decomposable impurities H_(2)O,-OH,and residual collectors in the crystal of purified quartz could be effectively removed through chlorine roasting above 900°C,which also had an obvious effect on the removal of low-valence trace elements Li,Na and K in the crystal of quartz but didn't affect the multivalent trace elements Al and Ti.This study revealed the removal and migration mechanism of the trace elements in quartz crystal during chlorine roasting.展开更多
The micro quartz crystal tuning fork gyroscope is a new type of vibratory gyroscope. The gyroscope should be analyzed and simulated early in the design stage in order to offer reliable basis for design and to shorten ...The micro quartz crystal tuning fork gyroscope is a new type of vibratory gyroscope. The gyroscope should be analyzed and simulated early in the design stage in order to offer reliable basis for design and to shorten the period of development. Thus the vibratory characteristics of the gyroscope is simulated with the finite element method of coupled field. The optimum exciting frequency and the factors which influence the gyroscope sensitivity are determined. The method for adjusting the frequency deviation between driving and detecting modes is also proposed.展开更多
We present a new polymer quartz piezoelectric crystal sensor that takes a quartz piezoelectric crystal as the basal material and a nanometer nonmetallic polymer thin film as the surface coating based on the principle ...We present a new polymer quartz piezoelectric crystal sensor that takes a quartz piezoelectric crystal as the basal material and a nanometer nonmetallic polymer thin film as the surface coating based on the principle of quartz crystal microbalance(QCM). The new sensor can be used to detect the characteristic materials of a volatile liquid. A mechanical model of the new sensor was built, whose structure was a thin circle plate composing of polytef/quartz piezoelectric/polytef. The mechanical model had a diameter of 8 mm and a thickness of 170 μm. The vibration state of the model was simulated by software ANSYS after the physical parameters and the boundary condition of the new sensor were set. According to the results of experiments, we set up a frequency range from 9.995850 MHz to 9.997225 MHz, 17 kinds of frequencies and modes of vibration were obtained within this range. We found a special frequency fspof 9.996358 MHz. When the resonant frequency of the new sensor's mechanical model reached the special frequency, a special phenomenon occurred. In this case, the amplitude of the center point O on the mechanical model reached the maximum value. At the same time, the minimum absolute difference between the simulated frequency based on the ANSYS software and the experimental measured stable frequency was reached. The research showed that the design of the new polymer quartz piezoelectric crystal sensor perfectly conforms to the principle of QCM. A special frequency value fspwas found and subsequently became one of the most important parameters in the new sensor design.展开更多
Quartz, the second most abundant mineral in the earth's crust, is a gangue mineral in practically every flotation process. Coarse quartz flotation has been a long standing problem in various mineral processing pla...Quartz, the second most abundant mineral in the earth's crust, is a gangue mineral in practically every flotation process. Coarse quartz flotation has been a long standing problem in various mineral processing plants to reduce milling cost and increase valuable mineral recovery. Based on this, the effects of nanobubbles(NBs) and hydrodynamic parameters on coarse quartz particle flotation were systematically investigated. Mechanical flotation experiments were carried out using the 7 cm and 9 cm diameter impellers in order to produce different hydrodynamic conditions. 900–1300 rpm impeller speeds were used for the 7 cm diameter impeller and 554–786 rpm for the 9 cm diameter impeller. The results show that the presence of NBs increased the flotation recovery of à425 + 106 lm quartz by up to 21%. For the7 cm diameter impeller, the maximum flotation recoveries of 86.4% and 98% were obtained in the absence and presence of NBs at Reynolds number(Re) of 81,000 and 66,000, respectively. For the 9 cm diameter impeller, the maximum recoveries of 86.3% and 97.5% were obtained in the absence and presence of NBs at Re of 90,000 and 75,000, respectively. NBs increased the flotation rate constant up to 36%.展开更多
Triboelectric separation, as an entirely dry technology, is a prospective method to process fine minerals.The aim of this paper is to investigate the performance of triboelectric separation of ilmenite and quartz mine...Triboelectric separation, as an entirely dry technology, is a prospective method to process fine minerals.The aim of this paper is to investigate the performance of triboelectric separation of ilmenite and quartz minerals in a lab unit and to get ready for the separation of ilmenite ore. A tribocharge measurement system was used to test the triboelectric properties of ilmenite and quartz particles with tribochargers respectively made of PVC, PPR, PMMA, Teflon, copper, stainless steel and quartz glass. The results show that the ilmenite particles charged positively while quartz charged negatively when tribocharged with PVC tribocharger. The mixture of 12% ilmenite and 88% quartz was prepared for the triboelectric separation. The recovery of ilmenite increases with the increase of airflow rate, decreases with the increasing feed rate, and grows up firstly and then decreases with the increasing voltage. A maximum ilmenite recovery of 51.71% with ilmenite content 32.72% was obtained at 40 m^3/h airflow rate, 6 g/s feed rate and 20 kV voltage. According to the optimal parameters of the separation of ilmenite and quartz mixture,fine ilmenite ore with 7.55% Ti content was beneficiated using the unit and the Ti content increased to 12.32% in concentrate product.展开更多
Temperature affects the flotation of quartz in the calcium/sodium oleate(Na OL)system,while there is a lack of understanding of its potential mechanism.Therefore,in this work,the flotation response of quartz to temper...Temperature affects the flotation of quartz in the calcium/sodium oleate(Na OL)system,while there is a lack of understanding of its potential mechanism.Therefore,in this work,the flotation response of quartz to temperature was investigated via micro-flotation experiments,interface property analyses,and theoretical calculations.Flotation results demonstrated that increasing temperature contributed to higher flotation recovery of quartz,which enhanced the removal of quartz from hematite.Surface tension results revealed that higher temperatures lowered the critical micelle concentration(CMC)and surface tension of the Na OL solution,and thus enhanced its surface activity.Solution chemistry calculations and X-ray photoelectron spectroscopy(XPS)measurements confirmed that the increased content of Ca(OH)+achieved by increasing temperatures enhanced the adsorption amounts of calcium species(acting as activation sites)on the quartz surface.Dynamic light scattering(DLS)measurements verified that the association degree of RCOOàto form(RCOO)22àwas strengthened.Furthermore,adsorption density measurements and molecular dynamics(MD)simulations confirmed that increasing the temperature facilitated Na OL adsorption toward the surface of the quartz,which was attributed to the stronger interaction between Na OL and the calcium-activated quartz surface at higher temperatures.As a result,quartz flotation was improved by increasing temperatures.Accordingly,a possible adsorption model was proposed.展开更多
To enhance the performance of traditional cationic collector,a novel polyhydroxy amine collector N-(2,3-Propanediol)-N-dodecylamine(PDDA)was designed by introducing one propylene glycol group into dodecylamine(DDA).It...To enhance the performance of traditional cationic collector,a novel polyhydroxy amine collector N-(2,3-Propanediol)-N-dodecylamine(PDDA)was designed by introducing one propylene glycol group into dodecylamine(DDA).It was prepared by a nucleophilic substitution reaction,which showed better solubility and hydrophobicity than DDA and was firstly employed as the collector for the separation of hematite and quartz.Flotation tests showed that PDDA had an excellent flotation performance and significantly better selectivity than DDA.In addition,the flotation performance and adsorption mechanism of PDDA on hematite and quartz surfaces were studied using Fourier transform infrared spectroscopy(FTIR),zeta potential and X-ray photoelectron spectroscopy(XPS)tests.These results demonstrated that the interaction between PDDA and the minerals’surfaces was mainly electrostatic adsorption and hydrogen bond,while PDDA tended to adsorb on the surfaces of quartz more than that of hematite.Performance optimization of amine collectors by introducing hydroxyl was also verified,which was of great meaning to the design,development,and application of the polyhydroxy cationic collector.In conclusion,PDDA could be used as a potential collector in the flotation separation of quartz and hematite.展开更多
The crystal structure and Raman spectra of quartz are calculated by using first-principles method in a pressure range from 0 to 5 GPa. The results show that the lattice constants(a, c, and V) decrease with increasin...The crystal structure and Raman spectra of quartz are calculated by using first-principles method in a pressure range from 0 to 5 GPa. The results show that the lattice constants(a, c, and V) decrease with increasing pressure and the a-axis is more compressible than the c axis. The Si–O bond distance decreases with increasing pressure, which is in contrast to experimental results reported by Hazen et al. [Hazen R M, Finger L W, Hemley R J and Mao H K 1989 Solid State Communications 725 507–511], and Glinnemann et al. [Glinnemann J, King H E Jr, Schulz H, Hahn T, La Placa S J and Dacol F 1992 Z. Kristallogr. 198 177–212]. The most striking changes are of inter-tetrahedral O–O distances and Si–O–Si angles. The volume of the SiO4^4- tetrahedron decreased by 0.9%(from 0 to 5 GPa), which suggests that it is relatively rigid.Vibrational models of the quartz modes are identified by visualizing the associated atomic motions. Raman vibrations are mainly controlled by the deformation of the Si O4-4tetrahedron and the changes in the Si–O–Si bonds. Vibrational directions and intensities of atoms in all Raman modes just show little deviations when pressure increases from 0 to 5 GPa.The pressure derivatives(dνi/d P) of the 12 Raman frequencies are obtained at 0 GPa–5 GPa. The calculated results show that first-principles methods can well describe the high-pressure structural properties and Raman spectra of quartz. The combination of first-principles simulations of the Raman frequencies of minerals and Raman spectroscopy experiments is a useful tool for exploring the stress conditions within the Earth.展开更多
In this paper,two surfactants,3-dodecyloxypropanamine(DOPA) and 3-tetradecyloxypropylamine(TOPA),were synthesized and used as collectors in the quartz micro-flotation in the laboratory.Microflotation tests,FT-IR,XPS m...In this paper,two surfactants,3-dodecyloxypropanamine(DOPA) and 3-tetradecyloxypropylamine(TOPA),were synthesized and used as collectors in the quartz micro-flotation in the laboratory.Microflotation tests,FT-IR,XPS measurements,and ab initio Molecular Dynamics(MD) simulations were conducted to research DOPA,TOPA,and dodecylamine(DDA)'s adsorption mechanisms onto quartz(101)surfaces.The results of micro-flotation show that the adsorption of DOPA and TOPA onto quartz surface is more robust than that of DDA.The zeta-potential result shows that the DOPA/TOPA was adsorbed on quartz through electrostatic attraction.Then,MD simulation adsorption models were built to compare the computational properties of the three surfactants,such as the radial distribution function,and the interaction energies between the collectors and the quartz cleavage surface.The interaction energies of surfactants(RNH_(3)^(+) or RNH_(2)) on the quartz surface explained why the pH range of DOPA/TOPA is wider than that of DDA.XPS analyses and MD simulations confirmed that DOPA bonded with the(101) surface of quartz through three types of hydrogen bonds between the-NH_(2) of DOPA and the O atom of quartz.The hydrogen bonds of type A and type C were the most likely type and more potent than those of type B.展开更多
The strong collecting performance of N-laurel-1,3-diaminopropane(ND13) with respect to quartz encouraged us to study its separation of hematite and quartz mixtures in a laboratory cell flotation test The results sho...The strong collecting performance of N-laurel-1,3-diaminopropane(ND13) with respect to quartz encouraged us to study its separation of hematite and quartz mixtures in a laboratory cell flotation test The results show that the best separation results can be achieved when the pulp pH is 7.27 and 58.3 mg/L collector plus 6.67 mg/L depressant are added to the mixture.Products with 58.45%,62.78%and 63.72% iron grades can be achieved respectively when mass ratio of hematite to quartz is 2:3,1:1,and 3:2.The adsorption mechanism of ND13 on a quartz surface was investigated by zeta-potential and X-ray photoelectron spectroscopy measurements.The results reveal that electrostatic and hydrogen bonding adsorption take place between ND13 and the quartz surface,and that ND13 mainly interacts with the oxygen atoms on the quartz surface.展开更多
Heterogeneous integrated InP high electron mobility transistors(HEMTs)on quartz wafers are fabricated successfully by using a reverse-grown InP epitaxial structure and benzocyclobutene(BCB)bonding technology.The chann...Heterogeneous integrated InP high electron mobility transistors(HEMTs)on quartz wafers are fabricated successfully by using a reverse-grown InP epitaxial structure and benzocyclobutene(BCB)bonding technology.The channel of the new device is In_(0.7)Ga_(0.3)As,and the gate length is 100 nm.A maximum extrinsic transconductance gm,max of 855.5 mS/mm and a maximum drain current of 536.5 mA/mm are obtained.The current gain cutoff frequency is as high as 262 GHz and the maximum oscillation frequency reaches 288 GHz.In addition,a small signal equivalent circuit model of heterogeneous integration of InP HEMTs on quartz wafer is built to characterize device performance.展开更多
We study the effects of couplings to flexure and face-shear modes on the admittance of an AT-cut quartz plate thickness-shear mode resonator. Mindlin’s two-dimensional equations for piezoelectric plates are employed....We study the effects of couplings to flexure and face-shear modes on the admittance of an AT-cut quartz plate thickness-shear mode resonator. Mindlin’s two-dimensional equations for piezoelectric plates are employed. Electrically forced vibration solutions are obtained for three cases: pure thickness-shear mode alone; two coupled modes of thickness shear and flexure; and three coupled modes of thickness shear, flexure, and face shear. Admittance is calculated and its dependence on the driving frequency and the length/thickness ratio of the resonator is examined. Results show that near the thickness-shear resonance, admittance assumes maxima, and that for certain values of the length/thickness ratio, the coupling to flexure causes severe admittance drops, while the coupling to the face-shear mode causes additional admittance changes that were previously unknown and hence are not considered in current resonator design practice.展开更多
A high-Q quartz crystal microbalance(QCM)sensor with a fundamental resonance frequency of 210 MHz is developed based on inverted mesa technology.The mass sensitivity reaches 5.332×10^17 Hz/kg at the center of the...A high-Q quartz crystal microbalance(QCM)sensor with a fundamental resonance frequency of 210 MHz is developed based on inverted mesa technology.The mass sensitivity reaches 5.332×10^17 Hz/kg at the center of the electrode,which is 5-7 orders of magnitude higher than the commonly used 5 MHz or 10 MHz QCMs(their mass sensitivity is 10^10-10^12 Hz/kg).This mass sensitivity is confirmed by an experiment of plating 1-ng rigid aluminium films on the surface of the QCM sensor.By comparing the changes in QCM equivalent parameters before and after coating the aluminum films,it is found that the QCM sensor maintains the high-Q characteristics of the quartz crystal while the mass sensitivity is significantly improved.Therefore,this QCM sensor may be used as a promising analytical tool for applications requiring high sensitivity detection.展开更多
Molecular deposition filming flooding (MDFF) is a novel oil recovery technique based on the thermopositive monolayer electrostatic adsorption of the MDFF agent on different interfaces within reservoir systems. In this...Molecular deposition filming flooding (MDFF) is a novel oil recovery technique based on the thermopositive monolayer electrostatic adsorption of the MDFF agent on different interfaces within reservoir systems. In this paper, the adsorption property of the MDFF agent, MD-1, on quartz sand has been studied through adsorption experiments at different pH and temperatures. Experimental data are also analyzed kinetically and thermodynamically. The results show that the adsorption of MD-1 on quartz sand takes place mainly because of electrostatic interactions, which corresponds to adsorption that increases with pH. Kinetic analyses show that at a higher pH the activation energy for adsorption gets lower and, therefore, the adsorption becomes quicker for MD-1 on quartz sand. Thermodynamic analyses show that pH plays an important role in the adsorption of MD-1 on quartz sand. At a higher pH, more negative surface charges result in the increase of electrostatic interactions between MD-1 and quartz sand. Therefore, the saturated adsorption amount increases and more adsorption heat will be released.展开更多
Some environmental and experimental variables such as annealing process alter the structure of glow curves of some thermoluminescence materials.We investigate the effects of annnealing on thermoluminescence peaks of s...Some environmental and experimental variables such as annealing process alter the structure of glow curves of some thermoluminescence materials.We investigate the effects of annnealing on thermoluminescence peaks of synthetic and natural quartz at different heating rates.The experimental results show that the peak temperatures of glow peaks in annealed samples shift to higher temperature sides.The amount of shifting is higher for low temperature peaks than high temperature peaks.The trap depths of annealed and unannealed samples of both synthetic and natural quartz are also obtained by various heating rate methods.It is noted that the annealing process affects the trap depth of all glow peaks and the trap depth increases after the annealing process.展开更多
When a powerful femtosecond laser pulse was tightly focused into a bulk quartz,plasma generation occurred only in a very small focal volume.This extremely confined interaction led to an explosive expansion and generat...When a powerful femtosecond laser pulse was tightly focused into a bulk quartz,plasma generation occurred only in a very small focal volume.This extremely confined interaction led to an explosive expansion and generated a sub-micrometre void with a diameter as small as 200-300nm.The dependence of the size of the void on the laser energy or pulse duration was investigated and the mechanism of this process was associated dominantly with the multiphoton ionization.展开更多
Quartz crystal resonators (QCRs) with circular electrodes have been widely used for various liquid and gas sensing applications. In this work, quartz crystal resonators with elliptical electrodes were studied and te...Quartz crystal resonators (QCRs) with circular electrodes have been widely used for various liquid and gas sensing applications. In this work, quartz crystal resonators with elliptical electrodes were studied and tested for liquid property measurement. Mindlin's theory was used to optimize the dimension and geometry of the electrodes and a 5-MHz QCR with minimum series resistance and without any spurious modes was obtained. A series of AT-cut QCRs with elliptical electrodes of different sizes were fabricated and their sensing performances were compared to devices with circular electrodes. The experimental result shows that the device with elliptical electrodes can obtain lower resonance impedance and a higher Q factor, which results in a better loading capability. Even though the sensitivities of devices with elliptical and circular electrodes are found to be similar, the sensor with elliptical electrodes has much higher resolution due to a better frequency stability. The study indicates that the performance of QCRs with elliptical electrodes is superior to that of traditional QCRs with circular electrodes.展开更多
The quartz crystal microbalance(QCM) is an important tool that can sense nanogram changes in mass. The hybrid temperature effect on a QCM resonator in aqueous solutions leads to unconvincing detection results. Contr...The quartz crystal microbalance(QCM) is an important tool that can sense nanogram changes in mass. The hybrid temperature effect on a QCM resonator in aqueous solutions leads to unconvincing detection results. Control of the temperature effect is one of the keys when using the QCM for high precision measurements. Based on the Sauerbrey's and Kanazawa's theories, we proposed a method for enhancing the accuracy of the QCM measurement, which takes into account not only the thermal variations of viscosity and density but also the thermal behavior of the QCM resonator. We presented an improved Sauerbrey equation that can be used to effectively compensate the drift of the QCM resonator. These results will play a significant role when applying the QCM at the room temperature.展开更多
Propagation properties of the quasi-longitudinal leaky surface acoustic wave (QLLSAW) along different directions on Y-rotated cut quartz substrates, such as on the 34°, 36°, 42° Y-rotated cut, are inves...Propagation properties of the quasi-longitudinal leaky surface acoustic wave (QLLSAW) along different directions on Y-rotated cut quartz substrates, such as on the 34°, 36°, 42° Y-rotated cut, are investigated. The advantages of the QLLSAW along some directions include low propagation attenuation (less than 10^(-4)dB/λ), small power flow deviation and high phase velocity which can be up to 7000 m/s. A novel propagation direction of the quasi longitudinal leaky surface acoustic wave with the theoretical temperature coefficient of delay of 0.508 ppm/°C is proposed.展开更多
基金National Natural Science Foundation of China(Grant Nos.62335006,62022032,62275065,and 61875047)Key Laboratory of Opto-Electronic Information Acquisition and Manipulation(Anhui University),Ministry of Education(Grant No.OEIAM202202)Fundamental Research Funds for the Central Universities(Grant No.HIT.OCEF.2023011).
文摘A highly sensitive light-induced thermoelectric spectroscopy(LITES)sensor based on a multi-pass cell(MPC)with dense spot pattern and a novel quartz tuning fork(QTF)with low resonance frequency is reported in this manuscript.An erbi-um-doped fiber amplifier(EDFA)was employed to amplify the output optical power so that the signal level was further enhanced.The optical path length(OPL)and the ratio of optical path length to volume(RLV)of the MPC is 37.7 m and 13.8 cm^(-2),respectively.A commercial QTF and a self-designed trapezoidal-tip QTF with low frequency of 9461.83 Hz were used as the detectors of the sensor,respectively.The target gas selected to test the performance of the system was acetylene(C2H2).When the optical power was constant at 1000 mW,the minimum detection limit(MDL)of the C2H2-LITES sensor can be achieved 48.3 ppb when using the commercial QTF and 24.6 ppb when using the trapezoid-al-tip QTF.An improvement of the detection performance by a factor of 1.96 was achieved after replacing the commer-cial QTF with the trapezoidal-tip QTF.
基金provided by the National Natural Science Foundation of China(No.52374273)the China Postdoctoral Science Foundation Project(No.2023M731041)。
文摘To investigate the effect of chlorine roasting on the migration and removal of trace elements in quartz lattice,firstly,an efficient pretreatment process,grinding–HCl washing–flotation–HF and HCl leaching,was used to remove the gangue minerals in quartz ore to obtain purified quartz for the preparation of high-purity quartz and the investigation of lattice impurities migration.The results showed that the high-purity quartz with total impurities less than 50μg/g could be obtained from purified quartz after being treated with chlorine at 1200°C.The variation of crystal structure and the lattice impurities migration of quartz during chlorine roasting were studied through in-situ XRD,TGA,SEM-EDS,ICP-MS,FT-IR and XPS analysis.It revealed that the decomposable impurities H_(2)O,-OH,and residual collectors in the crystal of purified quartz could be effectively removed through chlorine roasting above 900°C,which also had an obvious effect on the removal of low-valence trace elements Li,Na and K in the crystal of quartz but didn't affect the multivalent trace elements Al and Ti.This study revealed the removal and migration mechanism of the trace elements in quartz crystal during chlorine roasting.
文摘The micro quartz crystal tuning fork gyroscope is a new type of vibratory gyroscope. The gyroscope should be analyzed and simulated early in the design stage in order to offer reliable basis for design and to shorten the period of development. Thus the vibratory characteristics of the gyroscope is simulated with the finite element method of coupled field. The optimum exciting frequency and the factors which influence the gyroscope sensitivity are determined. The method for adjusting the frequency deviation between driving and detecting modes is also proposed.
基金Project supported by the National High Technology Research and Developmem Program of China ~Grant No. 2013AA030901).
文摘We present a new polymer quartz piezoelectric crystal sensor that takes a quartz piezoelectric crystal as the basal material and a nanometer nonmetallic polymer thin film as the surface coating based on the principle of quartz crystal microbalance(QCM). The new sensor can be used to detect the characteristic materials of a volatile liquid. A mechanical model of the new sensor was built, whose structure was a thin circle plate composing of polytef/quartz piezoelectric/polytef. The mechanical model had a diameter of 8 mm and a thickness of 170 μm. The vibration state of the model was simulated by software ANSYS after the physical parameters and the boundary condition of the new sensor were set. According to the results of experiments, we set up a frequency range from 9.995850 MHz to 9.997225 MHz, 17 kinds of frequencies and modes of vibration were obtained within this range. We found a special frequency fspof 9.996358 MHz. When the resonant frequency of the new sensor's mechanical model reached the special frequency, a special phenomenon occurred. In this case, the amplitude of the center point O on the mechanical model reached the maximum value. At the same time, the minimum absolute difference between the simulated frequency based on the ANSYS software and the experimental measured stable frequency was reached. The research showed that the design of the new polymer quartz piezoelectric crystal sensor perfectly conforms to the principle of QCM. A special frequency value fspwas found and subsequently became one of the most important parameters in the new sensor design.
文摘Quartz, the second most abundant mineral in the earth's crust, is a gangue mineral in practically every flotation process. Coarse quartz flotation has been a long standing problem in various mineral processing plants to reduce milling cost and increase valuable mineral recovery. Based on this, the effects of nanobubbles(NBs) and hydrodynamic parameters on coarse quartz particle flotation were systematically investigated. Mechanical flotation experiments were carried out using the 7 cm and 9 cm diameter impellers in order to produce different hydrodynamic conditions. 900–1300 rpm impeller speeds were used for the 7 cm diameter impeller and 554–786 rpm for the 9 cm diameter impeller. The results show that the presence of NBs increased the flotation recovery of à425 + 106 lm quartz by up to 21%. For the7 cm diameter impeller, the maximum flotation recoveries of 86.4% and 98% were obtained in the absence and presence of NBs at Reynolds number(Re) of 81,000 and 66,000, respectively. For the 9 cm diameter impeller, the maximum recoveries of 86.3% and 97.5% were obtained in the absence and presence of NBs at Re of 90,000 and 75,000, respectively. NBs increased the flotation rate constant up to 36%.
基金provided by the National Natural Science Foundation of China (Nos. 51674257 and 51574234)the Fundamental Research Funds for the Central Universities (2014QNB10)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Triboelectric separation, as an entirely dry technology, is a prospective method to process fine minerals.The aim of this paper is to investigate the performance of triboelectric separation of ilmenite and quartz minerals in a lab unit and to get ready for the separation of ilmenite ore. A tribocharge measurement system was used to test the triboelectric properties of ilmenite and quartz particles with tribochargers respectively made of PVC, PPR, PMMA, Teflon, copper, stainless steel and quartz glass. The results show that the ilmenite particles charged positively while quartz charged negatively when tribocharged with PVC tribocharger. The mixture of 12% ilmenite and 88% quartz was prepared for the triboelectric separation. The recovery of ilmenite increases with the increase of airflow rate, decreases with the increasing feed rate, and grows up firstly and then decreases with the increasing voltage. A maximum ilmenite recovery of 51.71% with ilmenite content 32.72% was obtained at 40 m^3/h airflow rate, 6 g/s feed rate and 20 kV voltage. According to the optimal parameters of the separation of ilmenite and quartz mixture,fine ilmenite ore with 7.55% Ti content was beneficiated using the unit and the Ti content increased to 12.32% in concentrate product.
基金supported by the Natio nal Natu ral Science Foundation of China(Nos.5187407251974064+1 种基金52174239)the Fundamental Research Funds for the Central Universities(No.N2101025)。
文摘Temperature affects the flotation of quartz in the calcium/sodium oleate(Na OL)system,while there is a lack of understanding of its potential mechanism.Therefore,in this work,the flotation response of quartz to temperature was investigated via micro-flotation experiments,interface property analyses,and theoretical calculations.Flotation results demonstrated that increasing temperature contributed to higher flotation recovery of quartz,which enhanced the removal of quartz from hematite.Surface tension results revealed that higher temperatures lowered the critical micelle concentration(CMC)and surface tension of the Na OL solution,and thus enhanced its surface activity.Solution chemistry calculations and X-ray photoelectron spectroscopy(XPS)measurements confirmed that the increased content of Ca(OH)+achieved by increasing temperatures enhanced the adsorption amounts of calcium species(acting as activation sites)on the quartz surface.Dynamic light scattering(DLS)measurements verified that the association degree of RCOOàto form(RCOO)22àwas strengthened.Furthermore,adsorption density measurements and molecular dynamics(MD)simulations confirmed that increasing the temperature facilitated Na OL adsorption toward the surface of the quartz,which was attributed to the stronger interaction between Na OL and the calcium-activated quartz surface at higher temperatures.As a result,quartz flotation was improved by increasing temperatures.Accordingly,a possible adsorption model was proposed.
基金supported by the National Natural Science Foun-dation of China(Nos.52104250,51874074,and 51874073)the Liaoning Revitalization Talents Program(No.XLYC1807089)the Fundamental Research Funds for the Central Universities(Nos.N2101029 and N2101047).
文摘To enhance the performance of traditional cationic collector,a novel polyhydroxy amine collector N-(2,3-Propanediol)-N-dodecylamine(PDDA)was designed by introducing one propylene glycol group into dodecylamine(DDA).It was prepared by a nucleophilic substitution reaction,which showed better solubility and hydrophobicity than DDA and was firstly employed as the collector for the separation of hematite and quartz.Flotation tests showed that PDDA had an excellent flotation performance and significantly better selectivity than DDA.In addition,the flotation performance and adsorption mechanism of PDDA on hematite and quartz surfaces were studied using Fourier transform infrared spectroscopy(FTIR),zeta potential and X-ray photoelectron spectroscopy(XPS)tests.These results demonstrated that the interaction between PDDA and the minerals’surfaces was mainly electrostatic adsorption and hydrogen bond,while PDDA tended to adsorb on the surfaces of quartz more than that of hematite.Performance optimization of amine collectors by introducing hydroxyl was also verified,which was of great meaning to the design,development,and application of the polyhydroxy cationic collector.In conclusion,PDDA could be used as a potential collector in the flotation separation of quartz and hematite.
基金Project supported by the Key Laboratory of Earthquake PredictionInstitute of Earthquake Science+1 种基金China Earthquake Administration(CEA)(Grant No.2012IES010201)the National Natural Science Foundation of China(Grant Nos.41174071 and 41373060)
文摘The crystal structure and Raman spectra of quartz are calculated by using first-principles method in a pressure range from 0 to 5 GPa. The results show that the lattice constants(a, c, and V) decrease with increasing pressure and the a-axis is more compressible than the c axis. The Si–O bond distance decreases with increasing pressure, which is in contrast to experimental results reported by Hazen et al. [Hazen R M, Finger L W, Hemley R J and Mao H K 1989 Solid State Communications 725 507–511], and Glinnemann et al. [Glinnemann J, King H E Jr, Schulz H, Hahn T, La Placa S J and Dacol F 1992 Z. Kristallogr. 198 177–212]. The most striking changes are of inter-tetrahedral O–O distances and Si–O–Si angles. The volume of the SiO4^4- tetrahedron decreased by 0.9%(from 0 to 5 GPa), which suggests that it is relatively rigid.Vibrational models of the quartz modes are identified by visualizing the associated atomic motions. Raman vibrations are mainly controlled by the deformation of the Si O4-4tetrahedron and the changes in the Si–O–Si bonds. Vibrational directions and intensities of atoms in all Raman modes just show little deviations when pressure increases from 0 to 5 GPa.The pressure derivatives(dνi/d P) of the 12 Raman frequencies are obtained at 0 GPa–5 GPa. The calculated results show that first-principles methods can well describe the high-pressure structural properties and Raman spectra of quartz. The combination of first-principles simulations of the Raman frequencies of minerals and Raman spectroscopy experiments is a useful tool for exploring the stress conditions within the Earth.
基金supported by the National Natural Science Foundation of China (Nos. 51974067 and 51774069)the China Scholarship Council (No. 201906080088)。
文摘In this paper,two surfactants,3-dodecyloxypropanamine(DOPA) and 3-tetradecyloxypropylamine(TOPA),were synthesized and used as collectors in the quartz micro-flotation in the laboratory.Microflotation tests,FT-IR,XPS measurements,and ab initio Molecular Dynamics(MD) simulations were conducted to research DOPA,TOPA,and dodecylamine(DDA)'s adsorption mechanisms onto quartz(101)surfaces.The results of micro-flotation show that the adsorption of DOPA and TOPA onto quartz surface is more robust than that of DDA.The zeta-potential result shows that the DOPA/TOPA was adsorbed on quartz through electrostatic attraction.Then,MD simulation adsorption models were built to compare the computational properties of the three surfactants,such as the radial distribution function,and the interaction energies between the collectors and the quartz cleavage surface.The interaction energies of surfactants(RNH_(3)^(+) or RNH_(2)) on the quartz surface explained why the pH range of DOPA/TOPA is wider than that of DDA.XPS analyses and MD simulations confirmed that DOPA bonded with the(101) surface of quartz through three types of hydrogen bonds between the-NH_(2) of DOPA and the O atom of quartz.The hydrogen bonds of type A and type C were the most likely type and more potent than those of type B.
基金Financial support for this research provided by the National Key Technology Development and Research Programs of China(Nos. 2008BAB32B14 and 2008BAB31B03)
文摘The strong collecting performance of N-laurel-1,3-diaminopropane(ND13) with respect to quartz encouraged us to study its separation of hematite and quartz mixtures in a laboratory cell flotation test The results show that the best separation results can be achieved when the pulp pH is 7.27 and 58.3 mg/L collector plus 6.67 mg/L depressant are added to the mixture.Products with 58.45%,62.78%and 63.72% iron grades can be achieved respectively when mass ratio of hematite to quartz is 2:3,1:1,and 3:2.The adsorption mechanism of ND13 on a quartz surface was investigated by zeta-potential and X-ray photoelectron spectroscopy measurements.The results reveal that electrostatic and hydrogen bonding adsorption take place between ND13 and the quartz surface,and that ND13 mainly interacts with the oxygen atoms on the quartz surface.
基金the National Natural Science Foundation of China(Grant No.61434006).
文摘Heterogeneous integrated InP high electron mobility transistors(HEMTs)on quartz wafers are fabricated successfully by using a reverse-grown InP epitaxial structure and benzocyclobutene(BCB)bonding technology.The channel of the new device is In_(0.7)Ga_(0.3)As,and the gate length is 100 nm.A maximum extrinsic transconductance gm,max of 855.5 mS/mm and a maximum drain current of 536.5 mA/mm are obtained.The current gain cutoff frequency is as high as 262 GHz and the maximum oscillation frequency reaches 288 GHz.In addition,a small signal equivalent circuit model of heterogeneous integration of InP HEMTs on quartz wafer is built to characterize device performance.
基金Project supported in part by the National Natural Science Foundation of China (Grant Nos. 10932004, 11072116, and 10772087)the Doctoral Program Fund of Ministry of Education of China (Grant No. 20093305110003/JW)+3 种基金Additional Funds were from the Sir Y. K. Pao Chair Professorshipthe K. C. Wong Magna Fund through Ningbo Universitythe K. C. Wong Education Foundation in Hong KongThe project also supported in part by the US Army Research Laboratory/US Army Research Office (Grant No. W911NF-10-1-0293)
文摘We study the effects of couplings to flexure and face-shear modes on the admittance of an AT-cut quartz plate thickness-shear mode resonator. Mindlin’s two-dimensional equations for piezoelectric plates are employed. Electrically forced vibration solutions are obtained for three cases: pure thickness-shear mode alone; two coupled modes of thickness shear and flexure; and three coupled modes of thickness shear, flexure, and face shear. Admittance is calculated and its dependence on the driving frequency and the length/thickness ratio of the resonator is examined. Results show that near the thickness-shear resonance, admittance assumes maxima, and that for certain values of the length/thickness ratio, the coupling to flexure causes severe admittance drops, while the coupling to the face-shear mode causes additional admittance changes that were previously unknown and hence are not considered in current resonator design practice.
基金Supported by the National Natural Science Foundation of China under Grant No 61871098
文摘A high-Q quartz crystal microbalance(QCM)sensor with a fundamental resonance frequency of 210 MHz is developed based on inverted mesa technology.The mass sensitivity reaches 5.332×10^17 Hz/kg at the center of the electrode,which is 5-7 orders of magnitude higher than the commonly used 5 MHz or 10 MHz QCMs(their mass sensitivity is 10^10-10^12 Hz/kg).This mass sensitivity is confirmed by an experiment of plating 1-ng rigid aluminium films on the surface of the QCM sensor.By comparing the changes in QCM equivalent parameters before and after coating the aluminum films,it is found that the QCM sensor maintains the high-Q characteristics of the quartz crystal while the mass sensitivity is significantly improved.Therefore,this QCM sensor may be used as a promising analytical tool for applications requiring high sensitivity detection.
文摘Molecular deposition filming flooding (MDFF) is a novel oil recovery technique based on the thermopositive monolayer electrostatic adsorption of the MDFF agent on different interfaces within reservoir systems. In this paper, the adsorption property of the MDFF agent, MD-1, on quartz sand has been studied through adsorption experiments at different pH and temperatures. Experimental data are also analyzed kinetically and thermodynamically. The results show that the adsorption of MD-1 on quartz sand takes place mainly because of electrostatic interactions, which corresponds to adsorption that increases with pH. Kinetic analyses show that at a higher pH the activation energy for adsorption gets lower and, therefore, the adsorption becomes quicker for MD-1 on quartz sand. Thermodynamic analyses show that pH plays an important role in the adsorption of MD-1 on quartz sand. At a higher pH, more negative surface charges result in the increase of electrostatic interactions between MD-1 and quartz sand. Therefore, the saturated adsorption amount increases and more adsorption heat will be released.
文摘Some environmental and experimental variables such as annealing process alter the structure of glow curves of some thermoluminescence materials.We investigate the effects of annnealing on thermoluminescence peaks of synthetic and natural quartz at different heating rates.The experimental results show that the peak temperatures of glow peaks in annealed samples shift to higher temperature sides.The amount of shifting is higher for low temperature peaks than high temperature peaks.The trap depths of annealed and unannealed samples of both synthetic and natural quartz are also obtained by various heating rate methods.It is noted that the annealing process affects the trap depth of all glow peaks and the trap depth increases after the annealing process.
基金Supported by National Key Basic Research Special Foundation of China under Grant No.G1999075207the National Natural Science Foundation of China under Grant Nos.19525412 and 19984001.
文摘When a powerful femtosecond laser pulse was tightly focused into a bulk quartz,plasma generation occurred only in a very small focal volume.This extremely confined interaction led to an explosive expansion and generated a sub-micrometre void with a diameter as small as 200-300nm.The dependence of the size of the void on the laser energy or pulse duration was investigated and the mechanism of this process was associated dominantly with the multiphoton ionization.
基金supported by the National Natural Science Foundation of China (Grant No.60571014)
文摘Quartz crystal resonators (QCRs) with circular electrodes have been widely used for various liquid and gas sensing applications. In this work, quartz crystal resonators with elliptical electrodes were studied and tested for liquid property measurement. Mindlin's theory was used to optimize the dimension and geometry of the electrodes and a 5-MHz QCR with minimum series resistance and without any spurious modes was obtained. A series of AT-cut QCRs with elliptical electrodes of different sizes were fabricated and their sensing performances were compared to devices with circular electrodes. The experimental result shows that the device with elliptical electrodes can obtain lower resonance impedance and a higher Q factor, which results in a better loading capability. Even though the sensitivities of devices with elliptical and circular electrodes are found to be similar, the sensor with elliptical electrodes has much higher resolution due to a better frequency stability. The study indicates that the performance of QCRs with elliptical electrodes is superior to that of traditional QCRs with circular electrodes.
基金supported by the National Natural Science Foundation of China(Grant No.61672094)
文摘The quartz crystal microbalance(QCM) is an important tool that can sense nanogram changes in mass. The hybrid temperature effect on a QCM resonator in aqueous solutions leads to unconvincing detection results. Control of the temperature effect is one of the keys when using the QCM for high precision measurements. Based on the Sauerbrey's and Kanazawa's theories, we proposed a method for enhancing the accuracy of the QCM measurement, which takes into account not only the thermal variations of viscosity and density but also the thermal behavior of the QCM resonator. We presented an improved Sauerbrey equation that can be used to effectively compensate the drift of the QCM resonator. These results will play a significant role when applying the QCM at the room temperature.
文摘Propagation properties of the quasi-longitudinal leaky surface acoustic wave (QLLSAW) along different directions on Y-rotated cut quartz substrates, such as on the 34°, 36°, 42° Y-rotated cut, are investigated. The advantages of the QLLSAW along some directions include low propagation attenuation (less than 10^(-4)dB/λ), small power flow deviation and high phase velocity which can be up to 7000 m/s. A novel propagation direction of the quasi longitudinal leaky surface acoustic wave with the theoretical temperature coefficient of delay of 0.508 ppm/°C is proposed.