We investigate the effectiveness of entropic uncertainty, entanglement and steering in discerning quantum phase transitions(QPTs). Specifically, we observe significant fluctuations in entropic uncertainty as the drivi...We investigate the effectiveness of entropic uncertainty, entanglement and steering in discerning quantum phase transitions(QPTs). Specifically, we observe significant fluctuations in entropic uncertainty as the driving parameter traverses the phase transition point. It is observed that the entropic uncertainty, entanglement and quantum steering, based on the electron distribution probability, can serve as indicators for detecting QPTs. Notably, we reveal an intriguing anticorrelation relationship between entropic uncertainty and entanglement in the Aubry–André model. Moreover, we explore the feasibility of detecting a QPT when the period parameter is a rational number. These observations open up new and efficient avenues for probing QPTs.展开更多
We investigate the role of quantum correlation around the quantum phase transitions by using quantum renormalization group theory. Numerical analysis indicates that quantum correlation as well as quantum nonlocality c...We investigate the role of quantum correlation around the quantum phase transitions by using quantum renormalization group theory. Numerical analysis indicates that quantum correlation as well as quantum nonlocality can efficiently detect the quantum critical point in the two-dimensional XY systems. The nonanalytic behavior of the first derivative of quantum correlation is observed at the critical point as the size of the model increases. Furthermore, we discuss the quantum correlation distribution in this system based on the square of concurrence(SC) and square of quantum discord(SQD). The monogamous properties of SC and SQD are obtained. Particularly, we prove that the quantum critical point can also be achieved by monogamy score.展开更多
In this paper, we study the quantum phase transition and the effect of impurity on the thermal entanglement between any two lattices in three-qubit Heisenberg XX chain in a uniform magnetic field. We show that the qua...In this paper, we study the quantum phase transition and the effect of impurity on the thermal entanglement between any two lattices in three-qubit Heisenberg XX chain in a uniform magnetic field. We show that the quantum phase transition always appears when impurity parameter is an arbitrary constant and unequal to zero, the external magnetic field and impurity parameters have a great effect on it. Also, there exists a relation between the quantum phase transition and the entanglement. By modulating the temperature, magnetic field and the impurity parameters, the entanglement between any two lattices can exhibit platform-like behaviour, which can be used to realize entanglement switch.展开更多
We investigate the effect of interaction, temperature, and anisotropic parameter on the quantum phase transitions in an anisotropic square-octagon lattice with fermions under the framework of the single band Hubbard m...We investigate the effect of interaction, temperature, and anisotropic parameter on the quantum phase transitions in an anisotropic square-octagon lattice with fermions under the framework of the single band Hubbard model through using the combination of cellular dynamical mean field theory and a continuous time Monte Carlo algorithm. The competition between interaction and temperature shows that with the increase of the anisotropic parameter, the critical on-site repulsive interaction for the metal-insulator transition increases for fixed temperature. The interaction-anisotropic parameter phase diagram reveals that with the decrease of temperature, the critical anisotropic parameter for the Mott transition will increase for fixed interaction cases.展开更多
We use the quantum renormalization-group(QRG) method to study the entanglement and quantum phase transition(QPT) in the one-dimensional spin-1/2 Heisenberg-Ising model [Lieb E,Schultz T and Mattis D 1961 Ann.Phys....We use the quantum renormalization-group(QRG) method to study the entanglement and quantum phase transition(QPT) in the one-dimensional spin-1/2 Heisenberg-Ising model [Lieb E,Schultz T and Mattis D 1961 Ann.Phys.(N.Y.) 16 407].We find the quantum phase boundary of this model by investigating the evolution of concurrence in terms of QRG iterations.We also investigate the scaling behavior of the system close to the quantum critical point,which shows that the minimum value of the first derivative of concurrence and the position of the minimum scale with an exponent of the system size.Also,the first derivative of concurrence between two blocks diverges at the quantum critical point,which is directly associated with the divergence of the correlation length.展开更多
This paper studies the discord of a bipartite two-level system coupling to an XY spin-chain environment in a transverse field and investigates the relationship between the discord property and the environment's quant...This paper studies the discord of a bipartite two-level system coupling to an XY spin-chain environment in a transverse field and investigates the relationship between the discord property and the environment's quantum phase transition. The results Show that the quantum discord is also able to characterize the quantum phase transitions. We also discuss the difference between discord and entanglement, and show that quantum discord may reveal more general information than quantum entanglement for characterizing the environment's quantum phase transition.展开更多
Topological phase transition in a single material usually refers to transitions between a trivial band insulator and a topological Dirac phase, and the transition may also occur between different classes of topologica...Topological phase transition in a single material usually refers to transitions between a trivial band insulator and a topological Dirac phase, and the transition may also occur between different classes of topological Dirac phases.It is a fundamental challenge to realize quantum transition between Z_2 nontrivial topological insulator(TI) and topological crystalline insulator(TCI) in one material because Z_2 TI and TCI have different requirements on the number of band inversions. The Z_2 TIs must have an odd number of band inversions over all the time-reversal invariant momenta, whereas the newly discovered TCIs, as a distinct class of the topological Dirac materials protected by the underlying crystalline symmetry, owns an even number of band inversions. Taking PbSnTe_2 alloy as an example, here we demonstrate that the atomic-ordering is an effective way to tune the symmetry of the alloy so that we can electrically switch between TCI phase and Z_2 TI phase in a single material. Our results suggest that the atomic-ordering provides a new platform towards the realization of reversibly switching between different topological phases to explore novel applications.展开更多
CePdAl has been recently recognized as a frustrated antiferromagnetic heavy-fermion compound with a pressureor field-tuned,extended quantum critical phase at zero temperature.Identifying characteristic signatures of t...CePdAl has been recently recognized as a frustrated antiferromagnetic heavy-fermion compound with a pressureor field-tuned,extended quantum critical phase at zero temperature.Identifying characteristic signatures of the emerging quantum critical phase,which are expected to be distinct from those near a quantum critical point,remains challenging.In this work,by performing ultrasonic and thermoelectric measurements down to very low temperatures in a^(3)He–^(4)He dilution refrigerator in the presence of magnetic field,we are able to obtain some crucial thermodynamic and thermal transport features of the quantum critical phase,including a frustration-related elastic softening detected by ultrasound and a Fermi-surface change probed by thermoelectric effect.展开更多
The quantum phase transition and the electronic transport in a triangular quantum dot system are investigated using the numerical renormalization group method.We concentrate on the interplay between the interdot capac...The quantum phase transition and the electronic transport in a triangular quantum dot system are investigated using the numerical renormalization group method.We concentrate on the interplay between the interdot capacitive coupling V and the interdot tunnel coupling t.For small t,three dots form a local spin doublet.As t increases,due to the competition between V and t,there exist two first-order transitions with phase sequence spin-doublet-magnetic frustration phase-orbital spin singlet.When t is absent,the evolutions of the total charge on the dots and the linear conductance are of the typical Coulomb-blockade features with increasing gate voltage.While for sufficient t,the antiferromagnetic spin correlation between dots is enhanced,and the conductance is strongly suppressed for the bonding state is almost doubly occupied.展开更多
A new simplified formula is presented to characterize genuine tripartite entanglement of (2 2 n)-dimensional quantum pure states. The formula turns out equivalent to that given in (Quant. Inf. Comp. 7(7) 584 ...A new simplified formula is presented to characterize genuine tripartite entanglement of (2 2 n)-dimensional quantum pure states. The formula turns out equivalent to that given in (Quant. Inf. Comp. 7(7) 584 (2007)), hence it also shows that the genuine tripartite entanglement can be described only on the basis of the local (2 2)-dimensional reduced density matrix. In particular, the two exactly solvable models of spin system studied by Yang (Phys. Rev. A 71 030302(R) (2005)) are reconsidered by employing the formula. The results show that a discontinuity in the first derivative of the formula or in the formula itself of the ground state just corresponds to the existence of quantum phase transition, which is obviously different from the concurrence.展开更多
We study geometric phases of the ground states of inhomogeneous XY spin chains in transverse fields with Dzyaloshinski--Moriya (DM) interaction, and investigate the effect of the DM interaction on the quantum phase ...We study geometric phases of the ground states of inhomogeneous XY spin chains in transverse fields with Dzyaloshinski--Moriya (DM) interaction, and investigate the effect of the DM interaction on the quantum phase transition (QPT) of such spin chains. The results show that the DM interaction could influence the distribution of the regions of QPTs but could not produce new critical points for the spin-chain. This study extends the relation between geometric phases and QPTs.展开更多
We study the quantum phase transition and entanglement in the Jaynes-Cummings model with squeezed light,utilize a special transformation method to obtain the analytical ground state of the model within the near-resona...We study the quantum phase transition and entanglement in the Jaynes-Cummings model with squeezed light,utilize a special transformation method to obtain the analytical ground state of the model within the near-resonance regime,and numerically verify the validity of the analytical ground state.It is found that the ground state exhibits a first-order quantum phase transition at the critical point linearly induced by squeezed light,and the ground state entanglement reaches its maximum when the qubit-field coupling strength is large enough at the critical point.展开更多
Calculations of the quantum information entropy have been extended to a non-analytically solvable situation. Specifically, we have investigated the information entropy for a one-dimensional system with a schematic "L...Calculations of the quantum information entropy have been extended to a non-analytically solvable situation. Specifically, we have investigated the information entropy for a one-dimensional system with a schematic "Landau" potential in a numerical way. Particularly, it is found that the phase transitional behavior of the system can be well expressed by the evolution of quantum information entropy. The calculated results also indicate that the position entropy S_x and the momentum entropy S_p at the critical point of phase transition may vary with the mass parameter M but their sum remains as a constant independent of M for a given excited state. In addition, the entropy uncertainty relation is proven to be robust during the whole process of the phase transition.展开更多
We investigate quantum phase transitions for q-state quantum Potts models(q=2,3,4)on a square lattice and for the Ising model on a honeycomb lattice by using the infinite projected entangled-pair state algorithm with ...We investigate quantum phase transitions for q-state quantum Potts models(q=2,3,4)on a square lattice and for the Ising model on a honeycomb lattice by using the infinite projected entangled-pair state algorithm with a simplified updating scheme.We extend the universal order parameter to a two-dimensional lattice system,which allows us to explore quantum phase transitions with symmetry-broken order for any translation-invariant quantum lattice system of the symmetry group G.The universal order parameter is zero in the symmetric phase,and it ranges from zero to unity in the symmetry-broken phase.The ground-state fidelity per lattice site is computed,and a pinch point is identified on the fidelity surface near the critical point.The results offer another example highlighting the connection between(i)critical points for a quantum many-body system undergoing a quantum phase-transition and(ii)pinch points on a fidelity surface.In addition,we discuss three quantum coherence measures:the quantum Jensen–Shannon divergence,the relative entropy of coherence,and the l1norm of coherence,which are singular at the critical point,thereby identifying quantum phase transitions.展开更多
We study the dynamical quantum phase transitions(DQPTs)in the XY chains with the Dzyaloshinskii-Moriya interaction and the XZY-YZX type of three-site interaction after a sudden quench.Both the models can be mapped to ...We study the dynamical quantum phase transitions(DQPTs)in the XY chains with the Dzyaloshinskii-Moriya interaction and the XZY-YZX type of three-site interaction after a sudden quench.Both the models can be mapped to the spinless free fermion models by the Jordan-Wigner and Bogoliubov transformations with the form■where the quasiparticle excitation spectraεkmay be smaller than 0 for some k and are asymmetrical■It is found that the factors of Loschmidt echo equal 1 for some k corresponding to the quasiparticle excitation spectra of the pre-quench Hamiltonian satisfyingε_(k)·ε_(-k)<0,when the quench is from the gapless phase.By considering the quench from different ground states,we obtain the conditions for the occurrence of DQPTs for the general XY chains with gapless phase,and find that the DQPTs may not occur in the quench across the quantum phase transitions regardless of whether the quench is from the gapless phase to gapped phase or from the gapped phase to gapless phase.This is different from the DQPTs in the case of quench from the gapped phase to gapped phase,in which the DQPTs will always appear.Moreover,we analyze the different reasons for the absence of DQPTs in the quench from the gapless phase and the gapped phase.The conclusion can also be extended to the general quantum spin chains.展开更多
Floquet dynamical quantum phase transitions(DQPTs),which are nonanalytic phenomena recuring periodically in time-periodic driven quantum many-body systems,have been widely studied in recent years.In this article,the F...Floquet dynamical quantum phase transitions(DQPTs),which are nonanalytic phenomena recuring periodically in time-periodic driven quantum many-body systems,have been widely studied in recent years.In this article,the Floquet DQPTs in transverse XY spin chains under the modulation ofδ-function periodic kickings are investigated.We analytically solve the system,and by considering the eigenstate as well as the ground state as the initial state of the Floquet dynamics,we study the corresponding multiple Floquet DQPTs emerged in the micromotion with different kicking moments.The rate function of return amplitude,the Pancharatnam geometric phase and the dynamical topological order parameter are calculated,which consistently verify the emergence of Floquet DQPTs in the system.展开更多
In our previous work [Phys. Rev. A 85 (2012) 044102], we studied the Berry phase of the ground state and exited states in the Lipkin model. In this work, using the Hellmann-Feynman theorem, we derive the relation be...In our previous work [Phys. Rev. A 85 (2012) 044102], we studied the Berry phase of the ground state and exited states in the Lipkin model. In this work, using the Hellmann-Feynman theorem, we derive the relation between the energy gap and the Berry phase closed to the excited state quantum phase transition (ESQPT) in the Lipkin model. It is found that the energy gap is approximately linearly dependent on the Berry phase being closed to the ESQPT for large N. As a result, the critical behavior of the energy gap is similar to that of the Berry phase. In addition, we also perform a semiclassical qualitative analysis about the critical behavior of the energy gap.展开更多
Recent experiments [Guo et al., Phys. Rev. Lett. 124 206602(2020)] on thermodynamic properties of the frustrated layered quantum magnet SrCu_(2)(BO_(3))_(2)-the Shastry–Sutherland material-have provided strong eviden...Recent experiments [Guo et al., Phys. Rev. Lett. 124 206602(2020)] on thermodynamic properties of the frustrated layered quantum magnet SrCu_(2)(BO_(3))_(2)-the Shastry–Sutherland material-have provided strong evidence for a lowtemperature phase transition between plaquette-singlet and antiferromagnetic order as a function of pressure. Further motivated by the recently discovered unusual first-order quantum phase transition with an apparent emergent O(4) symmetry of the antiferromagnetic and plaquette-singlet order parameters in a two-dimensional "checkerboard J-Q" quantum spin model[Zhao et al., Nat. Phys. 15 678(2019)], we here study the same model in the presence of weak inter-layer couplings. Our focus is on the evolution of the emergent symmetry as the system crosses over from two to three dimensions and the phase transition extends from strictly zero temperature in two dimensions up to finite temperature as expected in SrCu_(2)(BO_(3))_(2).Using quantum Monte Carlo simulations, we map out the phase boundaries of the plaquette-singlet and antiferromagnetic phases, with particular focus on the triple point where these two ordered phases meet the paramagnetic phase for given strength of the inter-layer coupling. All transitions are first-order in the neighborhood of the triple point. We show that the emergent O(4) symmetry of the coexistence state breaks down clearly when the interlayer coupling becomes sufficiently large, but for a weak coupling, of the magnitude expected experimentally, the enlarged symmetry can still be observed at the triple point up to significant length scales. Thus, it is likely that the plaquette-singlet to antiferromagnetic transition in SrCu_(2)(BO_(3))_(2) exhibits remnants of emergent O(4) symmetry, which should be observable due to additional weakly gapped Goldstone modes.展开更多
We construct a mapped bilayer quantum Hall system to realize the proposal that two nearly flatbands have opposite Chern numbers.For the C=±1 case,the two Landau levels of the bilayer experience opposite magnetic ...We construct a mapped bilayer quantum Hall system to realize the proposal that two nearly flatbands have opposite Chern numbers.For the C=±1 case,the two Landau levels of the bilayer experience opposite magnetic fields.We consider a mapped bilayer quantum Hall system at total fillingν_(t)=1/2+1/2where the intralayer interaction is repulsive and the interlayer interaction is attractive.We take exact diagonalization(ED)calculations on a torus to study the phase transition when the separation distance d/l_(B)is driven.The critical point at d_(c)/l_(B)=0.68 is characterized by a collapse of degeneracy and a crossing of energy levels.In the region d/l_(B)<d_(c)/l_(B),the states of each level are highly degenerate.The pair-correlation function indicates electrons with opposite pseudo-spins are strong correlated at r=0.We find an exciton stripe phase composed of bound pairs.The ferromagnetic ground state is destroyed by the strong effective attractive potential.An electron composite-Fermion(eCF)and a hole composite Fermion(hCF)are tightly bound.In the region d/lB>d_(c)/l_(B),a crossover from the d→d_(c)limit to the large d limit is observed.The electron and hole composite Fermion liquids(CFL)are realized by composite Fermions(CF)which attach opposite fluxes,respectively.展开更多
We propose a theoretical model to detect the quantum phase transition in a triangular quantum dot molecule with frustration. The boundaries of the phase diagram are accurately determined by the transmission. For small...We propose a theoretical model to detect the quantum phase transition in a triangular quantum dot molecule with frustration. The boundaries of the phase diagram are accurately determined by the transmission. For small frustration t, as the interdot Coulomb repulsion V increases, the system undergoes a Kosterlitz–Thouless(KT) transition from the Kondo resonance state with a transmission peak at zero energy to the Coulomb blocked state with zero transmission, which is followed by a first transition to the V-induced resonance(VIR) state with unitary transmission. For large frustration t, as V increases, the orbital spin singlet without transmission transits to the VIR state through a KT transition.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12075001 and 12175001)Anhui Provincial Key Research and Development Plan(Grant No.2022b13020004)the Fund of CAS Key Laboratory of Quantum Information(Grant No.KQI201701)。
文摘We investigate the effectiveness of entropic uncertainty, entanglement and steering in discerning quantum phase transitions(QPTs). Specifically, we observe significant fluctuations in entropic uncertainty as the driving parameter traverses the phase transition point. It is observed that the entropic uncertainty, entanglement and quantum steering, based on the electron distribution probability, can serve as indicators for detecting QPTs. Notably, we reveal an intriguing anticorrelation relationship between entropic uncertainty and entanglement in the Aubry–André model. Moreover, we explore the feasibility of detecting a QPT when the period parameter is a rational number. These observations open up new and efficient avenues for probing QPTs.
基金supported by the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20171397)the National Natural Science Foundation of China(Grant Nos.11535004,11375086,1175085,and 11120101005)+1 种基金the Foundation for Encouragement of College of Sciences(Grant No.LYLZJJ1616)the Pre-research Foundation of Army Engineering University of PLA
文摘We investigate the role of quantum correlation around the quantum phase transitions by using quantum renormalization group theory. Numerical analysis indicates that quantum correlation as well as quantum nonlocality can efficiently detect the quantum critical point in the two-dimensional XY systems. The nonanalytic behavior of the first derivative of quantum correlation is observed at the critical point as the size of the model increases. Furthermore, we discuss the quantum correlation distribution in this system based on the square of concurrence(SC) and square of quantum discord(SQD). The monogamous properties of SC and SQD are obtained. Particularly, we prove that the quantum critical point can also be achieved by monogamy score.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10774088)the Key Program of the National Natural Science Foundation of China (Grant No. 10534030)
文摘In this paper, we study the quantum phase transition and the effect of impurity on the thermal entanglement between any two lattices in three-qubit Heisenberg XX chain in a uniform magnetic field. We show that the quantum phase transition always appears when impurity parameter is an arbitrary constant and unequal to zero, the external magnetic field and impurity parameters have a great effect on it. Also, there exists a relation between the quantum phase transition and the entanglement. By modulating the temperature, magnetic field and the impurity parameters, the entanglement between any two lattices can exhibit platform-like behaviour, which can be used to realize entanglement switch.
基金supported by the National Natural Science Foundation of China(Grant Nos.11174169,11234007,and 51471093)
文摘We investigate the effect of interaction, temperature, and anisotropic parameter on the quantum phase transitions in an anisotropic square-octagon lattice with fermions under the framework of the single band Hubbard model through using the combination of cellular dynamical mean field theory and a continuous time Monte Carlo algorithm. The competition between interaction and temperature shows that with the increase of the anisotropic parameter, the critical on-site repulsive interaction for the metal-insulator transition increases for fixed temperature. The interaction-anisotropic parameter phase diagram reveals that with the decrease of temperature, the critical anisotropic parameter for the Mott transition will increase for fixed interaction cases.
文摘We use the quantum renormalization-group(QRG) method to study the entanglement and quantum phase transition(QPT) in the one-dimensional spin-1/2 Heisenberg-Ising model [Lieb E,Schultz T and Mattis D 1961 Ann.Phys.(N.Y.) 16 407].We find the quantum phase boundary of this model by investigating the evolution of concurrence in terms of QRG iterations.We also investigate the scaling behavior of the system close to the quantum critical point,which shows that the minimum value of the first derivative of concurrence and the position of the minimum scale with an exponent of the system size.Also,the first derivative of concurrence between two blocks diverges at the quantum critical point,which is directly associated with the divergence of the correlation length.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10905007 and 61078011)the Fundamental Research Funds for the Central Universities,China
文摘This paper studies the discord of a bipartite two-level system coupling to an XY spin-chain environment in a transverse field and investigates the relationship between the discord property and the environment's quantum phase transition. The results Show that the quantum discord is also able to characterize the quantum phase transitions. We also discuss the difference between discord and entanglement, and show that quantum discord may reveal more general information than quantum entanglement for characterizing the environment's quantum phase transition.
基金Supported by the Major State Basic Research Development Program of China under Grant No 2016YFB0700700the National Natural Science Foundation of China(NSFC)under Grants Nos 11634003,11474273,61121491 and U1530401+1 种基金supported by the National Young 1000 Talents Plansupported by the Youth Innovation Promotion Association of CAS(2017154)
文摘Topological phase transition in a single material usually refers to transitions between a trivial band insulator and a topological Dirac phase, and the transition may also occur between different classes of topological Dirac phases.It is a fundamental challenge to realize quantum transition between Z_2 nontrivial topological insulator(TI) and topological crystalline insulator(TCI) in one material because Z_2 TI and TCI have different requirements on the number of band inversions. The Z_2 TIs must have an odd number of band inversions over all the time-reversal invariant momenta, whereas the newly discovered TCIs, as a distinct class of the topological Dirac materials protected by the underlying crystalline symmetry, owns an even number of band inversions. Taking PbSnTe_2 alloy as an example, here we demonstrate that the atomic-ordering is an effective way to tune the symmetry of the alloy so that we can electrically switch between TCI phase and Z_2 TI phase in a single material. Our results suggest that the atomic-ordering provides a new platform towards the realization of reversibly switching between different topological phases to explore novel applications.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFA0303100)the National Natural Science Foundation of China(Grant Nos.12141002,52088101,and 11974389)+2 种基金the Fund of the Chinese Academy of Sciences through the Scientific Instrument Developing Project(Grant No.ZDKYYQ20210003)the Strategic Priority Research Program(Grant No.XDB33000000)by China Postdoctoral Science Foundation(Grant No.2020TQ0349)。
文摘CePdAl has been recently recognized as a frustrated antiferromagnetic heavy-fermion compound with a pressureor field-tuned,extended quantum critical phase at zero temperature.Identifying characteristic signatures of the emerging quantum critical phase,which are expected to be distinct from those near a quantum critical point,remains challenging.In this work,by performing ultrasonic and thermoelectric measurements down to very low temperatures in a^(3)He–^(4)He dilution refrigerator in the presence of magnetic field,we are able to obtain some crucial thermodynamic and thermal transport features of the quantum critical phase,including a frustration-related elastic softening detected by ultrasound and a Fermi-surface change probed by thermoelectric effect.
基金supported by the National Natural Science Foundation of China(Grant Nos.10874132 and 11174228)the Doctoral Scientific Research Foundation of HUAT(Grant No.BK201407)One of the authors(Huang Hai-Ming)supported by the Scientific Research Items Foundation of Educational Committee of Hubei Province,China(Grant No.Q20131805)
文摘The quantum phase transition and the electronic transport in a triangular quantum dot system are investigated using the numerical renormalization group method.We concentrate on the interplay between the interdot capacitive coupling V and the interdot tunnel coupling t.For small t,three dots form a local spin doublet.As t increases,due to the competition between V and t,there exist two first-order transitions with phase sequence spin-doublet-magnetic frustration phase-orbital spin singlet.When t is absent,the evolutions of the total charge on the dots and the linear conductance are of the typical Coulomb-blockade features with increasing gate voltage.While for sufficient t,the antiferromagnetic spin correlation between dots is enhanced,and the conductance is strongly suppressed for the bonding state is almost doubly occupied.
基金supported by the National Natural Science Foundation of China (Grant Nos 10747112 and 10575017)
文摘A new simplified formula is presented to characterize genuine tripartite entanglement of (2 2 n)-dimensional quantum pure states. The formula turns out equivalent to that given in (Quant. Inf. Comp. 7(7) 584 (2007)), hence it also shows that the genuine tripartite entanglement can be described only on the basis of the local (2 2)-dimensional reduced density matrix. In particular, the two exactly solvable models of spin system studied by Yang (Phys. Rev. A 71 030302(R) (2005)) are reconsidered by employing the formula. The results show that a discontinuity in the first derivative of the formula or in the formula itself of the ground state just corresponds to the existence of quantum phase transition, which is obviously different from the concurrence.
基金Project supported by National Natural Science Foundation of China (Grant Nos. 10847108 and 10775023)
文摘We study geometric phases of the ground states of inhomogeneous XY spin chains in transverse fields with Dzyaloshinski--Moriya (DM) interaction, and investigate the effect of the DM interaction on the quantum phase transition (QPT) of such spin chains. The results show that the DM interaction could influence the distribution of the regions of QPTs but could not produce new critical points for the spin-chain. This study extends the relation between geometric phases and QPTs.
基金Project supported by the Natural Science Foundation of Fujian Province,China(Grant No.2021J01574).
文摘We study the quantum phase transition and entanglement in the Jaynes-Cummings model with squeezed light,utilize a special transformation method to obtain the analytical ground state of the model within the near-resonance regime,and numerically verify the validity of the analytical ground state.It is found that the ground state exhibits a first-order quantum phase transition at the critical point linearly induced by squeezed light,and the ground state entanglement reaches its maximum when the qubit-field coupling strength is large enough at the critical point.
基金Project supported by the National Natural Science Foundation of China(Grant No.11375005)partially by 20150964-SIP-IPN,Mexico
文摘Calculations of the quantum information entropy have been extended to a non-analytically solvable situation. Specifically, we have investigated the information entropy for a one-dimensional system with a schematic "Landau" potential in a numerical way. Particularly, it is found that the phase transitional behavior of the system can be well expressed by the evolution of quantum information entropy. The calculated results also indicate that the position entropy S_x and the momentum entropy S_p at the critical point of phase transition may vary with the mass parameter M but their sum remains as a constant independent of M for a given excited state. In addition, the entropy uncertainty relation is proven to be robust during the whole process of the phase transition.
基金the National Natural Science Foundation of China(Grant No.11805285)Natural Science Foundation of Chongqing of China(Grant No.cstc2020jcyjmsxmX0034)the Science and Technology Research Program of Chongqing Municipal Education Commission(Grant No.KJQN 201900703)。
文摘We investigate quantum phase transitions for q-state quantum Potts models(q=2,3,4)on a square lattice and for the Ising model on a honeycomb lattice by using the infinite projected entangled-pair state algorithm with a simplified updating scheme.We extend the universal order parameter to a two-dimensional lattice system,which allows us to explore quantum phase transitions with symmetry-broken order for any translation-invariant quantum lattice system of the symmetry group G.The universal order parameter is zero in the symmetric phase,and it ranges from zero to unity in the symmetry-broken phase.The ground-state fidelity per lattice site is computed,and a pinch point is identified on the fidelity surface near the critical point.The results offer another example highlighting the connection between(i)critical points for a quantum many-body system undergoing a quantum phase-transition and(ii)pinch points on a fidelity surface.In addition,we discuss three quantum coherence measures:the quantum Jensen–Shannon divergence,the relative entropy of coherence,and the l1norm of coherence,which are singular at the critical point,thereby identifying quantum phase transitions.
基金supported by the National Natural Science Foundation of China(Grant Nos.11975126 and 11575087)。
文摘We study the dynamical quantum phase transitions(DQPTs)in the XY chains with the Dzyaloshinskii-Moriya interaction and the XZY-YZX type of three-site interaction after a sudden quench.Both the models can be mapped to the spinless free fermion models by the Jordan-Wigner and Bogoliubov transformations with the form■where the quasiparticle excitation spectraεkmay be smaller than 0 for some k and are asymmetrical■It is found that the factors of Loschmidt echo equal 1 for some k corresponding to the quasiparticle excitation spectra of the pre-quench Hamiltonian satisfyingε_(k)·ε_(-k)<0,when the quench is from the gapless phase.By considering the quench from different ground states,we obtain the conditions for the occurrence of DQPTs for the general XY chains with gapless phase,and find that the DQPTs may not occur in the quench across the quantum phase transitions regardless of whether the quench is from the gapless phase to gapped phase or from the gapped phase to gapless phase.This is different from the DQPTs in the case of quench from the gapped phase to gapped phase,in which the DQPTs will always appear.Moreover,we analyze the different reasons for the absence of DQPTs in the quench from the gapless phase and the gapped phase.The conclusion can also be extended to the general quantum spin chains.
基金supported by the National Natural Science Foundation of China(Grant No.11475037)the Fundamental Research Funds for the Central Universities(Grant No.DUT19LK38)。
文摘Floquet dynamical quantum phase transitions(DQPTs),which are nonanalytic phenomena recuring periodically in time-periodic driven quantum many-body systems,have been widely studied in recent years.In this article,the Floquet DQPTs in transverse XY spin chains under the modulation ofδ-function periodic kickings are investigated.We analytically solve the system,and by considering the eigenstate as well as the ground state as the initial state of the Floquet dynamics,we study the corresponding multiple Floquet DQPTs emerged in the micromotion with different kicking moments.The rate function of return amplitude,the Pancharatnam geometric phase and the dynamical topological order parameter are calculated,which consistently verify the emergence of Floquet DQPTs in the system.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11204012 and 91321103
文摘In our previous work [Phys. Rev. A 85 (2012) 044102], we studied the Berry phase of the ground state and exited states in the Lipkin model. In this work, using the Hellmann-Feynman theorem, we derive the relation between the energy gap and the Berry phase closed to the excited state quantum phase transition (ESQPT) in the Lipkin model. It is found that the energy gap is approximately linearly dependent on the Berry phase being closed to the ESQPT for large N. As a result, the critical behavior of the energy gap is similar to that of the Berry phase. In addition, we also perform a semiclassical qualitative analysis about the critical behavior of the energy gap.
基金the support from the RGC of Hong Kong SAR China (Grant Nos. GRF 17303019 and 17301420)the National Key Research and Development Program of China (Grant No. 2016YFA0300502)+3 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No. XDB33000000)support from the National Natural Science Foundation of China (Grant No. 12004020)AWS was supported by the NSF (Grant No. DMR-1710170)by the Simons Foundation (Grant No. 511064)。
文摘Recent experiments [Guo et al., Phys. Rev. Lett. 124 206602(2020)] on thermodynamic properties of the frustrated layered quantum magnet SrCu_(2)(BO_(3))_(2)-the Shastry–Sutherland material-have provided strong evidence for a lowtemperature phase transition between plaquette-singlet and antiferromagnetic order as a function of pressure. Further motivated by the recently discovered unusual first-order quantum phase transition with an apparent emergent O(4) symmetry of the antiferromagnetic and plaquette-singlet order parameters in a two-dimensional "checkerboard J-Q" quantum spin model[Zhao et al., Nat. Phys. 15 678(2019)], we here study the same model in the presence of weak inter-layer couplings. Our focus is on the evolution of the emergent symmetry as the system crosses over from two to three dimensions and the phase transition extends from strictly zero temperature in two dimensions up to finite temperature as expected in SrCu_(2)(BO_(3))_(2).Using quantum Monte Carlo simulations, we map out the phase boundaries of the plaquette-singlet and antiferromagnetic phases, with particular focus on the triple point where these two ordered phases meet the paramagnetic phase for given strength of the inter-layer coupling. All transitions are first-order in the neighborhood of the triple point. We show that the emergent O(4) symmetry of the coexistence state breaks down clearly when the interlayer coupling becomes sufficiently large, but for a weak coupling, of the magnitude expected experimentally, the enlarged symmetry can still be observed at the triple point up to significant length scales. Thus, it is likely that the plaquette-singlet to antiferromagnetic transition in SrCu_(2)(BO_(3))_(2) exhibits remnants of emergent O(4) symmetry, which should be observable due to additional weakly gapped Goldstone modes.
文摘We construct a mapped bilayer quantum Hall system to realize the proposal that two nearly flatbands have opposite Chern numbers.For the C=±1 case,the two Landau levels of the bilayer experience opposite magnetic fields.We consider a mapped bilayer quantum Hall system at total fillingν_(t)=1/2+1/2where the intralayer interaction is repulsive and the interlayer interaction is attractive.We take exact diagonalization(ED)calculations on a torus to study the phase transition when the separation distance d/l_(B)is driven.The critical point at d_(c)/l_(B)=0.68 is characterized by a collapse of degeneracy and a crossing of energy levels.In the region d/l_(B)<d_(c)/l_(B),the states of each level are highly degenerate.The pair-correlation function indicates electrons with opposite pseudo-spins are strong correlated at r=0.We find an exciton stripe phase composed of bound pairs.The ferromagnetic ground state is destroyed by the strong effective attractive potential.An electron composite-Fermion(eCF)and a hole composite Fermion(hCF)are tightly bound.In the region d/lB>d_(c)/l_(B),a crossover from the d→d_(c)limit to the large d limit is observed.The electron and hole composite Fermion liquids(CFL)are realized by composite Fermions(CF)which attach opposite fluxes,respectively.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11174228 and 10874132)
文摘We propose a theoretical model to detect the quantum phase transition in a triangular quantum dot molecule with frustration. The boundaries of the phase diagram are accurately determined by the transmission. For small frustration t, as the interdot Coulomb repulsion V increases, the system undergoes a Kosterlitz–Thouless(KT) transition from the Kondo resonance state with a transmission peak at zero energy to the Coulomb blocked state with zero transmission, which is followed by a first transition to the V-induced resonance(VIR) state with unitary transmission. For large frustration t, as V increases, the orbital spin singlet without transmission transits to the VIR state through a KT transition.