As a branch of quantum image processing,quantum image scaling has been widely studied.However,most of the existing quantum image scaling algorithms are based on nearest-neighbor interpolation and bilinear interpolatio...As a branch of quantum image processing,quantum image scaling has been widely studied.However,most of the existing quantum image scaling algorithms are based on nearest-neighbor interpolation and bilinear interpolation,the quantum version of bicubic interpolation has not yet been studied.In this work,we present the first quantum image scaling scheme for bicubic interpolation based on the novel enhanced quantum representation(NEQR).Our scheme can realize synchronous enlargement and reduction of the image with the size of 2^(n)×2^(n) by integral multiple.Firstly,the image is represented by NEQR and the original image coordinates are obtained through multiple CNOT modules.Then,16 neighborhood pixels are obtained by quantum operation circuits,and the corresponding weights of these pixels are calculated by quantum arithmetic modules.Finally,a quantum matrix operation,instead of a classical convolution operation,is used to realize the sum of convolution of these pixels.Through simulation experiments and complexity analysis,we demonstrate that our scheme achieves exponential speedup over the classical bicubic interpolation algorithm,and has better effect than the quantum version of bilinear interpolation.展开更多
This paper explores a double quantum images representation(DNEQR)model that allows for simultaneous storage of two digital images in a quantum superposition state.Additionally,a new type of two-dimensional hyperchaoti...This paper explores a double quantum images representation(DNEQR)model that allows for simultaneous storage of two digital images in a quantum superposition state.Additionally,a new type of two-dimensional hyperchaotic system based on sine and logistic maps is investigated,offering a wider parameter space and better chaotic behavior compared to the sine and logistic maps.Based on the DNEQR model and the hyperchaotic system,a double quantum images encryption algorithm is proposed.Firstly,two classical plaintext images are transformed into quantum states using the DNEQR model.Then,the proposed hyperchaotic system is employed to iteratively generate pseudo-random sequences.These chaotic sequences are utilized to perform pixel value and position operations on the quantum image,resulting in changes to both pixel values and positions.Finally,the ciphertext image can be obtained by qubit-level diffusion using two XOR operations between the position-permutated image and the pseudo-random sequences.The corresponding quantum circuits are also given.Experimental results demonstrate that the proposed scheme ensures the security of the images during transmission,improves the encryption efficiency,and enhances anti-interference and anti-attack capabilities.展开更多
As a part of quantum image processing,quantum image filtering is a crucial technology in the development of quantum computing.Low-pass filtering can effectively achieve anti-aliasing effects on images.Currently,most q...As a part of quantum image processing,quantum image filtering is a crucial technology in the development of quantum computing.Low-pass filtering can effectively achieve anti-aliasing effects on images.Currently,most quantum image filterings are based on classical domains and grayscale images,and there are relatively fewer studies on anti-aliasing in the quantum domain.This paper proposes a scheme for anti-aliasing filtering based on quantum grayscale and color image scaling in the spatial domain.It achieves the effect of anti-aliasing filtering on quantum images during the scaling process.First,we use the novel enhanced quantum representation(NEQR)and the improved quantum representation of color images(INCQI)to represent classical images.Since aliasing phenomena are more pronounced when images are scaled down,this paper focuses only on the anti-aliasing effects in the case of reduction.Subsequently,we perform anti-aliasing filtering on the quantum representation of the original image and then use bilinear interpolation to scale down the image,achieving the anti-aliasing effect.The constructed pyramid model is then used to select an appropriate image for upscaling to the original image size.Finally,the complexity of the circuit is analyzed.Compared to the images experiencing aliasing effects solely due to scaling,applying anti-aliasing filtering to the images results in smoother and clearer outputs.Additionally,the anti-aliasing filtering allows for manual intervention to select the desired level of image smoothness.展开更多
We redesign the parameterized quantum circuit in the quantum deep neural network, construct a three-layer structure as the hidden layer, and then use classical optimization algorithms to train the parameterized quantu...We redesign the parameterized quantum circuit in the quantum deep neural network, construct a three-layer structure as the hidden layer, and then use classical optimization algorithms to train the parameterized quantum circuit, thereby propose a novel hybrid quantum deep neural network(HQDNN) used for image classification. After bilinear interpolation reduces the original image to a suitable size, an improved novel enhanced quantum representation(INEQR) is used to encode it into quantum states as the input of the HQDNN. Multi-layer parameterized quantum circuits are used as the main structure to implement feature extraction and classification. The output results of parameterized quantum circuits are converted into classical data through quantum measurements and then optimized on a classical computer. To verify the performance of the HQDNN, we conduct binary classification and three classification experiments on the MNIST(Modified National Institute of Standards and Technology) data set. In the first binary classification, the accuracy of 0 and 4 exceeds98%. Then we compare the performance of three classification with other algorithms, the results on two datasets show that the classification accuracy is higher than that of quantum deep neural network and general quantum convolutional neural network.展开更多
As a part of quantum image processing, quantum image scaling is a significant technology for the development of quantum computation. At present, most of the quantum image scaling schemes are based on grayscale images,...As a part of quantum image processing, quantum image scaling is a significant technology for the development of quantum computation. At present, most of the quantum image scaling schemes are based on grayscale images, with relatively little processing for color images. This paper proposes a quantum color image scaling scheme based on bilinear interpolation, which realizes the 2^(n_(1)) × 2^(n_(2)) quantum color image scaling. Firstly, the improved novel quantum representation of color digital images(INCQI) is employed to represent a 2^(n_(1)) × 2^(n_(2)) quantum color image, and the bilinear interpolation method for calculating pixel values of the interpolated image is presented. Then the quantum color image scaling-up and scaling-down circuits are designed by utilizing a series of quantum modules, and the complexity of the circuits is analyzed.Finally, the experimental simulation results of MATLAB based on the classical computer are given. The ultimate results demonstrate that the complexities of the scaling-up and scaling-down schemes are quadratic and linear, respectively, which are much lower than the cubic function and exponential function of other bilinear interpolation schemes.展开更多
We propose a new quantum watermarking scheme based on threshold selection using informational entropy of quantum image.The core idea of this scheme is to embed information into object and background of cover image in ...We propose a new quantum watermarking scheme based on threshold selection using informational entropy of quantum image.The core idea of this scheme is to embed information into object and background of cover image in different ways.First,a threshold method adopting the quantum informational entropy is employed to determine a threshold value.The threshold value can then be further used for segmenting the cover image to a binary image,which is an authentication key for embedding and extraction information.By a careful analysis of the quantum circuits of the scheme,that is,translating into the basic gate sequences which show the low complexity of the scheme.One of the simulation-based experimental results is entropy difference which measures the similarity of two images by calculating the difference in quantum image informational entropy between watermarked image and cover image.Furthermore,the analyses of peak signal-to-noise ratio,histogram and capacity of the scheme are also provided.展开更多
In the field of Internet, an image is of great significance to information transmission. Meanwhile, how to ensure and improve its security has become the focus of international research. We combine DNA codec with quan...In the field of Internet, an image is of great significance to information transmission. Meanwhile, how to ensure and improve its security has become the focus of international research. We combine DNA codec with quantum Arnold transform(QAr T) to propose a new double encryption algorithm for quantum color images to improve the security and robustness of image encryption. First, we utilize the biological characteristics of DNA codecs to perform encoding and decoding operations on pixel color information in quantum color images, and achieve pixel-level diffusion. Second, we use QAr T to scramble the position information of quantum images and use the operated image as the key matrix for quantum XOR operations. All quantum operations in this paper are reversible, so the decryption operation of the ciphertext image can be realized by the reverse operation of the encryption process. We conduct simulation experiments on encryption and decryption using three color images of “Monkey”, “Flower”, and “House”. The experimental results show that the peak value and correlation of the encrypted images on the histogram have good similarity, and the average normalized pixel change rate(NPCR) of RGB three-channel is 99.61%, the average uniform average change intensity(UACI) is 33.41%,and the average information entropy is about 7.9992. In addition, the robustness of the proposed algorithm is verified by the simulation of noise interference in the actual scenario.展开更多
The statistical error is ineluctable in any measurement. Quantum techniques, especially with the development of quantum information, can help us squeeze the statistical error and enhance the precision of measurement. ...The statistical error is ineluctable in any measurement. Quantum techniques, especially with the development of quantum information, can help us squeeze the statistical error and enhance the precision of measurement. In a quantum system, there are some quantum parameters, such as the quantum state, quantum operator, and quantum dimension, which have no classical counterparts. So quantum metrology deals with not only the traditional parameters, but also the quantum parameters. Quantum metrology includes two important parts: measuring the physical parameters with a precision beating the classical physics limit and measuring the quantum parameters precisely. In this review, we will introduce how quantum characters (e.g., squeezed state and quantum entanglement) yield a higher precision, what the research areas are scientists most interesting in, and what the development status of quantum metrology and its perspectives are.展开更多
基金Project supported by the Scientific Research Fund of Hunan Provincial Education Department,China (Grant No.21A0470)the Natural Science Foundation of Hunan Province,China (Grant No.2023JJ50268)+1 种基金the National Natural Science Foundation of China (Grant Nos.62172268 and 62302289)the Shanghai Science and Technology Project,China (Grant Nos.21JC1402800 and 23YF1416200)。
文摘As a branch of quantum image processing,quantum image scaling has been widely studied.However,most of the existing quantum image scaling algorithms are based on nearest-neighbor interpolation and bilinear interpolation,the quantum version of bicubic interpolation has not yet been studied.In this work,we present the first quantum image scaling scheme for bicubic interpolation based on the novel enhanced quantum representation(NEQR).Our scheme can realize synchronous enlargement and reduction of the image with the size of 2^(n)×2^(n) by integral multiple.Firstly,the image is represented by NEQR and the original image coordinates are obtained through multiple CNOT modules.Then,16 neighborhood pixels are obtained by quantum operation circuits,and the corresponding weights of these pixels are calculated by quantum arithmetic modules.Finally,a quantum matrix operation,instead of a classical convolution operation,is used to realize the sum of convolution of these pixels.Through simulation experiments and complexity analysis,we demonstrate that our scheme achieves exponential speedup over the classical bicubic interpolation algorithm,and has better effect than the quantum version of bilinear interpolation.
基金Project supported by the Open Fund of Anhui Key Laboratory of Mine Intelligent Equipment and Technology (Grant No.ZKSYS202204)the Talent Introduction Fund of Anhui University of Science and Technology (Grant No.2021yjrc34)the Scientific Research Fund of Anhui Provincial Education Department (Grant No.KJ2020A0301)。
文摘This paper explores a double quantum images representation(DNEQR)model that allows for simultaneous storage of two digital images in a quantum superposition state.Additionally,a new type of two-dimensional hyperchaotic system based on sine and logistic maps is investigated,offering a wider parameter space and better chaotic behavior compared to the sine and logistic maps.Based on the DNEQR model and the hyperchaotic system,a double quantum images encryption algorithm is proposed.Firstly,two classical plaintext images are transformed into quantum states using the DNEQR model.Then,the proposed hyperchaotic system is employed to iteratively generate pseudo-random sequences.These chaotic sequences are utilized to perform pixel value and position operations on the quantum image,resulting in changes to both pixel values and positions.Finally,the ciphertext image can be obtained by qubit-level diffusion using two XOR operations between the position-permutated image and the pseudo-random sequences.The corresponding quantum circuits are also given.Experimental results demonstrate that the proposed scheme ensures the security of the images during transmission,improves the encryption efficiency,and enhances anti-interference and anti-attack capabilities.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62172268 and 62302289)the Shanghai Science and Technology Project(Grant Nos.21JC1402800 and 23YF1416200)。
文摘As a part of quantum image processing,quantum image filtering is a crucial technology in the development of quantum computing.Low-pass filtering can effectively achieve anti-aliasing effects on images.Currently,most quantum image filterings are based on classical domains and grayscale images,and there are relatively fewer studies on anti-aliasing in the quantum domain.This paper proposes a scheme for anti-aliasing filtering based on quantum grayscale and color image scaling in the spatial domain.It achieves the effect of anti-aliasing filtering on quantum images during the scaling process.First,we use the novel enhanced quantum representation(NEQR)and the improved quantum representation of color images(INCQI)to represent classical images.Since aliasing phenomena are more pronounced when images are scaled down,this paper focuses only on the anti-aliasing effects in the case of reduction.Subsequently,we perform anti-aliasing filtering on the quantum representation of the original image and then use bilinear interpolation to scale down the image,achieving the anti-aliasing effect.The constructed pyramid model is then used to select an appropriate image for upscaling to the original image size.Finally,the complexity of the circuit is analyzed.Compared to the images experiencing aliasing effects solely due to scaling,applying anti-aliasing filtering to the images results in smoother and clearer outputs.Additionally,the anti-aliasing filtering allows for manual intervention to select the desired level of image smoothness.
基金Project supported by the Natural Science Foundation of Shandong Province,China (Grant No. ZR2021MF049)the Joint Fund of Natural Science Foundation of Shandong Province (Grant Nos. ZR2022LLZ012 and ZR2021LLZ001)。
文摘We redesign the parameterized quantum circuit in the quantum deep neural network, construct a three-layer structure as the hidden layer, and then use classical optimization algorithms to train the parameterized quantum circuit, thereby propose a novel hybrid quantum deep neural network(HQDNN) used for image classification. After bilinear interpolation reduces the original image to a suitable size, an improved novel enhanced quantum representation(INEQR) is used to encode it into quantum states as the input of the HQDNN. Multi-layer parameterized quantum circuits are used as the main structure to implement feature extraction and classification. The output results of parameterized quantum circuits are converted into classical data through quantum measurements and then optimized on a classical computer. To verify the performance of the HQDNN, we conduct binary classification and three classification experiments on the MNIST(Modified National Institute of Standards and Technology) data set. In the first binary classification, the accuracy of 0 and 4 exceeds98%. Then we compare the performance of three classification with other algorithms, the results on two datasets show that the classification accuracy is higher than that of quantum deep neural network and general quantum convolutional neural network.
基金the National Natural Science Foundation of China (Grant No. 6217070290)Shanghai Science and Technology Project (Grant Nos. 21JC1402800 and 20040501500)。
文摘As a part of quantum image processing, quantum image scaling is a significant technology for the development of quantum computation. At present, most of the quantum image scaling schemes are based on grayscale images, with relatively little processing for color images. This paper proposes a quantum color image scaling scheme based on bilinear interpolation, which realizes the 2^(n_(1)) × 2^(n_(2)) quantum color image scaling. Firstly, the improved novel quantum representation of color digital images(INCQI) is employed to represent a 2^(n_(1)) × 2^(n_(2)) quantum color image, and the bilinear interpolation method for calculating pixel values of the interpolated image is presented. Then the quantum color image scaling-up and scaling-down circuits are designed by utilizing a series of quantum modules, and the complexity of the circuits is analyzed.Finally, the experimental simulation results of MATLAB based on the classical computer are given. The ultimate results demonstrate that the complexities of the scaling-up and scaling-down schemes are quadratic and linear, respectively, which are much lower than the cubic function and exponential function of other bilinear interpolation schemes.
基金supported by the National Natural Science Foundation of China(Grant No.6217070290)the Shanghai Science and Technology Project(Grant Nos.21JC1402800 and 20040501500)+2 种基金the Scientific Research Fund of Hunan Provincial Education Department(Grant No.21A0470)the Hunan Provincial Natural Science Foundation of China(Grant No.2020JJ4557)Top-Notch Innovative Talent Program for Postgraduate Students of Shanghai Maritime University(Grant No.2021YBR009)。
文摘We propose a new quantum watermarking scheme based on threshold selection using informational entropy of quantum image.The core idea of this scheme is to embed information into object and background of cover image in different ways.First,a threshold method adopting the quantum informational entropy is employed to determine a threshold value.The threshold value can then be further used for segmenting the cover image to a binary image,which is an authentication key for embedding and extraction information.By a careful analysis of the quantum circuits of the scheme,that is,translating into the basic gate sequences which show the low complexity of the scheme.One of the simulation-based experimental results is entropy difference which measures the similarity of two images by calculating the difference in quantum image informational entropy between watermarked image and cover image.Furthermore,the analyses of peak signal-to-noise ratio,histogram and capacity of the scheme are also provided.
基金Project supported by the Natural Science Foundation of Shandong Province, China (Grant No. ZR2021MF049)Joint Fund of Natural Science Foundation of Shandong Province (Grant Nos. ZR2022LLZ012 and ZR2021LLZ001)the Key R&D Program of Shandong Province, China (Grant No. 2023CXGC010901)。
文摘In the field of Internet, an image is of great significance to information transmission. Meanwhile, how to ensure and improve its security has become the focus of international research. We combine DNA codec with quantum Arnold transform(QAr T) to propose a new double encryption algorithm for quantum color images to improve the security and robustness of image encryption. First, we utilize the biological characteristics of DNA codecs to perform encoding and decoding operations on pixel color information in quantum color images, and achieve pixel-level diffusion. Second, we use QAr T to scramble the position information of quantum images and use the operated image as the key matrix for quantum XOR operations. All quantum operations in this paper are reversible, so the decryption operation of the ciphertext image can be realized by the reverse operation of the encryption process. We conduct simulation experiments on encryption and decryption using three color images of “Monkey”, “Flower”, and “House”. The experimental results show that the peak value and correlation of the encrypted images on the histogram have good similarity, and the average normalized pixel change rate(NPCR) of RGB three-channel is 99.61%, the average uniform average change intensity(UACI) is 33.41%,and the average information entropy is about 7.9992. In addition, the robustness of the proposed algorithm is verified by the simulation of noise interference in the actual scenario.
基金Project supported by the National Basic Research Program of China(Grant Nos.2011CBA00200 and 2011CB9211200)the National Natural Science Foun-dation of China(Grant Nos.61108009 and 61222504)+1 种基金the Anhui Provincial Natural Science Foundation,China(Grant No.1208085QA08)the Ph.D.Program Foundation of Ministry of Education of China(Grant No.20113402120017)
文摘The statistical error is ineluctable in any measurement. Quantum techniques, especially with the development of quantum information, can help us squeeze the statistical error and enhance the precision of measurement. In a quantum system, there are some quantum parameters, such as the quantum state, quantum operator, and quantum dimension, which have no classical counterparts. So quantum metrology deals with not only the traditional parameters, but also the quantum parameters. Quantum metrology includes two important parts: measuring the physical parameters with a precision beating the classical physics limit and measuring the quantum parameters precisely. In this review, we will introduce how quantum characters (e.g., squeezed state and quantum entanglement) yield a higher precision, what the research areas are scientists most interesting in, and what the development status of quantum metrology and its perspectives are.