The shuttle effect of lithium polysulfides(LiPSs)and uncontrollable lithium dendrite growth seriously hinder the practical application of lithium-sulfur(Li-S)batteries.To simultaneously address such issues,monodispers...The shuttle effect of lithium polysulfides(LiPSs)and uncontrollable lithium dendrite growth seriously hinder the practical application of lithium-sulfur(Li-S)batteries.To simultaneously address such issues,monodispersed Nb N quantum dots anchored on nitrogen-doped hollow carbon nanorods(NbN@NHCR)are elaborately developed as efficient Li PSs immobilizer and Li stabilizer for high-performance Li-S full batteries.Density functional theory(DFT)calculations and experimental characterizations demonstrate that the sulfiphilic and lithiophilic NbN@NHCR hybrid can not only efficiently immobilize the soluble Li PSs and facilitate diffusion-conversion kinetics for alleviating the shuttling effect,but also homogenize the distribution of Li+ions and regulate uniform Li deposition for suppressing Li-dendrite growth.As a result,the assembled Li-S full batteries(NbN@NHCR-S||Nb N@NHCR-Li)deliver excellent long-term cycling stability with a low decay rate of 0.031%per cycle over 1000 cycles at high rate of 2 C.Even at a high S loading of 5.8 mg cm^(-2)and a low electrolyte/sulfur ratio of 5.2μL mg^(-1),a large areal capacity of 6.2 mA h cm^(-2)can be achieved in Li-S pouch cell at 0.1 C.This study provides a new perspective via designing a dual-functional sulfiphilic and lithiophilic hybrid to address serious issues of the shuttle effect of S cathode and dendrite growth of Li anode.展开更多
CsPbI_(3)perovskite quantum dots(QDs)are ideal materials for the next generation of red light-emitting diodes.However,the low phase stability of CsPbI_(3)QDs and long-chain insulating capping ligands hinder the improv...CsPbI_(3)perovskite quantum dots(QDs)are ideal materials for the next generation of red light-emitting diodes.However,the low phase stability of CsPbI_(3)QDs and long-chain insulating capping ligands hinder the improvement of device performance.Traditional in-situ ligand replacement and ligand exchange after synthesis were often difficult to control.Here,we proposed a new ligand exchange strategy using a proton-prompted insitu exchange of short 5-aminopentanoic acid ligands with long-chain oleic acid and oleylamine ligands to obtain stable small-size CsPbI_(3)QDs.This exchange strategy maintained the size and morphology of CsPbI_(3)QDs and improved the optical properties and the conductivity of CsPbI_(3)QDs films.As a result,high-efficiency red QD-based light-emitting diodes with an emission wavelength of 645 nm demonstrated a record maximum external quantum efficiency of 24.45%and an operational half-life of 10.79 h.展开更多
This research investigates the hydrothermal synthesis and annealing duration effects on nickel sulfide(NiS_(2) quantum dots(QDs)for catalytic decolorization of methylene blue(MB)dye and antimicrobial efficacy.QD size ...This research investigates the hydrothermal synthesis and annealing duration effects on nickel sulfide(NiS_(2) quantum dots(QDs)for catalytic decolorization of methylene blue(MB)dye and antimicrobial efficacy.QD size increased with longer annealing,reducing catalytic activity.UV–vis,XRD,TEM,and FTIR analyses probed optical structural,morphological,and vibrational features.XRD confirmed NiS2's anorthic structure,with crystallite size growing from 6.53 to 7.81 nm during extended annealing.UV–Vis exhibited a bathochromic shift,reflecting reduced band gap energy(Eg)in NiS_(2).TEM revealed NiS_(2)QD formation,with agglomerated QD average size increasing from 7.13 to 9.65 nm with prolonged annealing.Pure NiS_(2) showed significant MB decolorization(89.85%)in acidic conditions.Annealed NiS_(2) QDs demonstrated notable antibacterial activity,yielding a 6.15mm inhibition zone against Escherichia coli(E.coli)compared to Ciprofloxacin.First-principles computation supported a robust interaction between MB and NiS_(2),evidenced by obtained adsorption energies.This study highlights the nuanced relationship between annealing duration,structural changes,and functional properties in NiS_(2)QDs,emphasizing their potential applications in catalysis and antibacterial interventions.展开更多
Lead sulfide quantum dots(PbS QDs) hold unique characteristics, including bandgap tunability, solutionprocessability etc., which make them highly applicable in tandem solar cells(TSCs). In all QD TSCs, its efficiency ...Lead sulfide quantum dots(PbS QDs) hold unique characteristics, including bandgap tunability, solutionprocessability etc., which make them highly applicable in tandem solar cells(TSCs). In all QD TSCs, its efficiency lags much behind to their single junction counterparts due to the deficient interconnection layer(ICL) and defective subcells. To improve TSCs performance, we developed three kinds of ICL structures based on 1.34 and 0.96 e V PbS QDs subcells. The control, 1,2-ethanedithiol capped PbS QDs(PbS-EDT)/Au/tin dioxide(SnO_(2))/zinc oxide(Zn O), utilized SnO_(2) layer to obtain high surface compactness.However, its energy level mismatch causes incomplete recombination. Bypassing it, the second ICL(PbS-EDT/Au/Zn O) removed SnO_(2) and boosted the power conversion efficiency(PCE) from 5.75% to 8.69%. In the third ICL(PbS-EDT/poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine](PTAA)/Au/Zn O), a thin layer of PTAA can effectively fill fissures on the surface of PbS-EDT and also protect the front cells from solvent penetration. This TSC obtained a PCE of 9.49% with an open circuit voltage of 0.91 V, a short circuit current density of 15.47 m A/cm~2, and a fill factor of 67.7%. To the best of our knowledge, this was the highest PCE achieved by all PbS QD TSCs reported to date. These TSCs maintained stable performance for a long working time under ambient conditions.展开更多
As lead halide perovskite(LHP)semiconductors have shown tremendous promise in many application fields,and particularly made strong impact in the solar photovoltaic area,low dimensional quantum dot forms of these perov...As lead halide perovskite(LHP)semiconductors have shown tremendous promise in many application fields,and particularly made strong impact in the solar photovoltaic area,low dimensional quantum dot forms of these perovskites are showing the potential to make distinct marks in the fields of electronics,optoelectronics and photonics.The so-called perovskite quantum dots(PQDs)not only possess the most important features of LHP materials,i.e.,the unusual high defect tolerance,but also demonstrate clear quantum size effects,along with exhibiting desirable optoelectronic properties such as near perfect photoluminescent quantum yield,multiple exciton generation and slow hot-carrier cooling.Here,we review the advantageous properties of these nanoscale perovskites and survey the prospects for diverse applications which include lightemitting devices,solar cells,photocatalysts,lasers,detectors and memristors,emphasizing the distinct superiorities as well as the challenges.展开更多
Thermal management of nanoscale quantum dots(QDs)in light-emitting devices is a long-lasting challenge.The existing heat transfer reinforcement solutions for QDs-polymer composite mainly rely on thermal-conductive fil...Thermal management of nanoscale quantum dots(QDs)in light-emitting devices is a long-lasting challenge.The existing heat transfer reinforcement solutions for QDs-polymer composite mainly rely on thermal-conductive fillers.However,this strategy failed to deliver the QDs’heat generation across a long distance,and the accumulated heat still causes considerable temperature rise of QDs-polymer composite,which eventually menaces the performance and reliability of lightemitting devices.Inspired by the radially aligned fruit fibers in oranges,we proposed to eliminate this heat dissipation challenge by establishing long-range ordered heat transfer pathways within the QDs-polymer composite.Ultrahigh molecular weight polyethylene fibers(UPEF)were radially aligned throughout the polymer matrix,thus facilitating massive efficient heat dissipation of the QDs.Under a UPEF filling fraction of 24.46 vol%,the in-plane thermal conductivity of QDs-radially aligned UPEF composite(QDs-RAPE)could reach 10.45 W m^(−1) K^(−1),which is the highest value of QDs-polymer composite reported so far.As a proof of concept,the QDs’working temperature can be reduced by 342.5℃ when illuminated by a highly concentrated laser diode(LD)under driving current of 1000 mA,thus improving their optical performance.This work may pave a new way for next generation high-power QDs lighting applications.展开更多
The combination of non-Hermitian physics and Majorana fermions can give rise to new effects in quantum transport systems. In this work, we investigate the interplay of PT-symmetric complex potentials, Majorana tunneli...The combination of non-Hermitian physics and Majorana fermions can give rise to new effects in quantum transport systems. In this work, we investigate the interplay of PT-symmetric complex potentials, Majorana tunneling and interdot tunneling in a non-Hermitian double quantum dots system. It is found that in the weak-coupling regime the Majorana tunneling has pronounced effects on the transport properties of such a system, manifested as splitting of the single peak into three and a reduced 1/4 peak in the transmission function. In the presence of the PT-symmetric complex potentials and interdot tunneling, the 1/4 central peak is robust against them, while the two side peaks are tuned by them. The interdot tunneling only induces asymmetry, instead of moving the conductance peak, due to the robustness of the Majorana modes. There is an exceptional point induced by the union of Majorana tunneling and interdot tunneling. With increased PT-symmetric complex potentials, the two side peaks will move towards each other. When the exceptional point is passed through, these two side peaks will disappear. In the strong-coupling regime, the Majorana fermion induces a 1/4 conductance dip instead of the three-peak structure. PT-symmetric complex potentials induce two conductance dips pinned at the exceptional point. These effects should be accessible in experiments.展开更多
Ag-In-Ga-S(AIGS)quantum dots(QDs)have recently attracted great interests due to the outstanding optical properties and eco-friendly components,which are considered as an alternative replacement for toxic Pb-and Cd-bas...Ag-In-Ga-S(AIGS)quantum dots(QDs)have recently attracted great interests due to the outstanding optical properties and eco-friendly components,which are considered as an alternative replacement for toxic Pb-and Cd-based QDs.However,enormous attention has been paid to how to narrow their broadband spectra,ignoring the application advantages of the broadband emission.In this work,the AIGS QDs with controllable broad green-red dual-emission are first reported,which is achieved through adjusting the size distribution of QDs by controlling the nucleation and growth of AIGS crystals.Resultantly,the AIGS QDs exhibit broad dual-emission at green-and red-band evidenced by photoluminescence(PL)spectra,and the PL relative intensity and peak position can be finely adjusted.Furthermore,the dual-emission is the intrinsic characteristics from the difference in confinement effect of large particles and tiny particles confirmed by temperature-dependent PL spectra.Accordingly,the AIGS QDs(the size consists of 17 nm and 3.7 nm)with 530 nm and 630 nm emission could successfully be synthesized at 220°C.By combining the blue light-emitting diode(LED)chips and dual-emission AIGS QDs,the constructed white light-emitting devices(WLEDs)exhibit a continuous and broad spectrum like natural sunlight with the Commission Internationale de l’Eclairage(CIE)chromaticity coordinates of(0.33,0.31),a correlated color temperature(CCT)of 5425 K,color rendering index(CRI)of 90,and luminous efficacy of radiation(LER)of 129 lm/W,which indicates that the AIGS QDs have huge potential for lighting applications.展开更多
Two-dimensional(2D)transition metal dichalcogenides(TMD)are atomically thin semiconductors with promising optoelectronic applications across the visible spectrum.However,their intrinsically weak light absorption and t...Two-dimensional(2D)transition metal dichalcogenides(TMD)are atomically thin semiconductors with promising optoelectronic applications across the visible spectrum.However,their intrinsically weak light absorption and the low photoluminescence quantum yield(PLQY)restrict their performance and potential use,especially in ultraviolet(UV)wavelength light ranges.Quantum dots(QD)derived from 2D materials(2D/QD)provide efficient light absorption and emission of which energy can be tuned for desirable light wavelength.In this study,we greatly enhanced the photon absorption and PLQY of monolayer(1L)tungsten disulfide(WS_(2))in the UV range via hybridization with 2D/QD,particularly titanium nitride MXene QD(Ti_(2)N MQD)and graphitic carbon nitride QD(GCNQD).With the hybridization of MQD or GCNQD,1LWS_(2)showed a maximum PL enhancement by 15 times with 300 nm wavelength excitation,while no noticeable enhancement was observed when the excitation photon energy was less than the bandgap of the QD,indicating that UV absorption by the QD played a crucial role in enhancing the light emission of 1L-WS_(2)in our 0D/2D hybrid system.Our findings present a convenient method for enhancing the photo-response of 1L-WS_(2)to UV light and offer exciting possibilities for harvesting UV energy using 1L-TMD.展开更多
The single-shot readout data process is essential for the realization of high-fidelity qubits and fault-tolerant quantum algorithms in semiconductor quantum dots. However, the fidelity and visibility of the readout pr...The single-shot readout data process is essential for the realization of high-fidelity qubits and fault-tolerant quantum algorithms in semiconductor quantum dots. However, the fidelity and visibility of the readout process are sensitive to the choice of the thresholds and limited by the experimental hardware. By demonstrating the linear dependence between the measured spin state probabilities and readout visibilities along with dark counts, we describe an alternative threshold-independent method for the single-shot readout of spin qubits in semiconductor quantum dots. We can obtain the extrapolated spin state probabilities of the prepared probabilities of the excited spin state through the threshold-independent method. We then analyze the corresponding errors of the method, finding that errors of the extrapolated probabilities cannot be neglected with no constraints on the readout time and threshold voltage. Therefore, by limiting the readout time and threshold voltage, we ensure the accuracy of the extrapolated probability. We then prove that the efficiency and robustness of this method are 60 times larger than those of the most commonly used method. Moreover, we discuss the influence of the electron temperature on the effective area with a fixed external magnetic field and provide a preliminary demonstration for a single-shot readout of up to 0.7K/1.5T in the future.展开更多
The performance of the photodetector is significantly impacted by the inherent surface faults in GaAs nanowires(NWs).We combined three-dimensional(3D)gallium arsenide nanowires with zero-dimensional(0D)WS_(2) quantum ...The performance of the photodetector is significantly impacted by the inherent surface faults in GaAs nanowires(NWs).We combined three-dimensional(3D)gallium arsenide nanowires with zero-dimensional(0D)WS_(2) quantum dot(QDs)materials in a simple and convenient way to form a heterogeneous structure.Various performance enhancements have been realized through the formation of typeⅡenergy bands in heterostructures,opening up new research directions for the future development of photodetector devices.This work successfully fabricated a high-sensitivity photodetector based on WS_(2)QDs/GaAs NWs heterostructure.Under 660 nm laser excitation,the photodetector exhibits a responsivity of 368.07 A/W,a detectivity of 2.7×10^(12)Jones,an external quantum efficiency of 6.47×10^(2)%,a low-noise equivalent power of 2.27×10^(-17)W·Hz^(-1/2),a response time of 0.3 s,and a recovery time of 2.12 s.This study provides a new solution for the preparation of high-performance GaAs detectors and promotes the development of optoelectronic devices for GaAs NWs.展开更多
We utilize the calculation of hierarchical equations of motion to demonstrate that the spin-dependent properties between adjacent quantum dots(QDs)can be changed by breaking the internal symmetry configuration,corresp...We utilize the calculation of hierarchical equations of motion to demonstrate that the spin-dependent properties between adjacent quantum dots(QDs)can be changed by breaking the internal symmetry configuration,corresponding to the inversion of dominant chiral states.In the linear triple quantum dots(LTQDs)connected to two electron reservoirs,we can observe that the blockage appears at the triangle triple quantum dots(TTQDs)by gradually increasing the coupling strength between next-nearest double QDs.When the initial coupling between LTQDs has altered,the internal chiral circulation also undergoes the corresponding transform,thus achieving qualitative regulation and detection of the blocking region.We also investigate the response of the chiral circulation to the dot–lead coupling strength,indicating the overall robust chiral circulation of the TTQDs frustration.展开更多
Quantum dot-based up-conversion photodetector,in which an infrared photodiode(PD)and a quantum dot light-emitting diode(QLED)are back-to-back connected,is a promising candidate for low-cost infrared imaging.However,th...Quantum dot-based up-conversion photodetector,in which an infrared photodiode(PD)and a quantum dot light-emitting diode(QLED)are back-to-back connected,is a promising candidate for low-cost infrared imaging.However,the huge efficiency losses caused by integrating the PD and QLED together hasn’t been studied sufficiently.This work revealed at least three origins for the efficiency losses.First,the PD unit and QLED unit usually didn’t work under optimal conditions at the same time.Second,the potential barriers and traps at the interconnection between PD and QLED units induced unfavorable carrier recombination.Third,much emitted visible light was lost due to the strong visible absorption in the PD unit.Based on the understandings on the loss mechanisms,the infrared up-conversion photodetectors were optimized and achieved a breakthrough photon-to-photon conversion efficiency of 6.9%.This study provided valuable guidance on how to optimize the way of integration for up-conversion photodetectors.展开更多
Colloidal quantum dot (CQD) solar cells have attracted great interest due to their low cost and superior photo-electric properties. Remarkable improvements in cell performances of both quantum dot sensitized solar c...Colloidal quantum dot (CQD) solar cells have attracted great interest due to their low cost and superior photo-electric properties. Remarkable improvements in cell performances of both quantum dot sensitized solar cells (QDSCs) and FbX (X = S, Se) based CQD solar cells have been achieved in recent years, and the power conversion efficiencies (PCEs) ex- ceeding 12% were reported so far. In this review, we will focus on the recent progress in CQD solar cells. We firstly summarize the advance of CQD sensitizer materials and the strategies for enhancing carrier collection efficiency in QD- SCs, including developing multi-component alloyed CQDs and core-shell structured CQDs, as well as various methods to suppress interfacial carrier recombination. Then, we discuss the device architecture development of PbX CQD based solar cells and surface/interface passivation methods to increase light absorption and carrier extraction efficiencies. Finally, a short summary, challenge, and perspective are given.展开更多
Solution-processed colloidal quantum dot solar cells(CQDSCs) is a promising candidate for new generation solar cells.To obtain stable and high performance lead sulfide(PbS)-based CQDSCs,high carrier mobility and low n...Solution-processed colloidal quantum dot solar cells(CQDSCs) is a promising candidate for new generation solar cells.To obtain stable and high performance lead sulfide(PbS)-based CQDSCs,high carrier mobility and low non-radiative recombination center density in the PbS CQDs active layer are required.In order to effectively improve the carrier mobility in PbS CQDs layer of CQDSCs,butylamine(BTA)-modified graphene oxide(BTA@GO) is first utilized in PbS-PbX2(X=I-,Br-) CQDs ink to deposit the active layer of CQDSCs through one-step spin-coating method.Such surface treatment of GO dramatically upholds the intrinsic superior hole transfer peculiarity of GO and attenuates the hydrophilicity of GO in order to allow for its good dispersibility in ink solvent.The introduction of B TA@GO in CQDs layer can build up a bulk nano-heterojunction architecture,which provides a smooth charge carrier transport channel in turn improves the carrier mobility and conductivity,extends the carriers lifetime and reduces the trap density of PbS-PbX2 CQDs film.Finally,the BTA@GO/PbS-PbX2 hybrid CQDs film-based relatively large-area(0.35 cm2) CQDSCs shows a champion power conversion efficiency of 11.7% which is increased by 23.1% compared with the control device.展开更多
Perovskite quantum dots(PQDs)have been considered promising and effective photovoltaic absorber due to their superior optoelectronic properties and inherent material merits combining perovskites and QDs.However,they e...Perovskite quantum dots(PQDs)have been considered promising and effective photovoltaic absorber due to their superior optoelectronic properties and inherent material merits combining perovskites and QDs.However,they exhibit low moisture stability at room humidity(20-30%)owing to many surface defect sites generated by inefficient ligand exchange process.These surface traps must be re-passivated to improve both charge transport ability and moisture stability.To address this issue,PQD-organic semiconductor hybrid solar cells with suitable electrical properties and functional groups might dramatically improve the charge extraction and defect passivation.Conventional organic semiconductors are typically low-dimensional(1D and 2D)and prone to excessive self-aggregation,which limits chemical interaction with PQDs.In this work,we designed a new 3D star-shaped semiconducting material(Star-TrCN)to enhance the compatibility with PQDs.The robust bonding with Star-TrCN and PQDs is demonstrated by theoretical modeling and experimental validation.The Star-TrCN-PQD hybrid films show improved cubic-phase stability of CsPbI_(3)-PQDs via reduced surface trap states and suppressed moisture penetration.As a result,the resultant devices not only achieve remarkable device stability over 1000 h at 20-30%relative humidity,but also boost power conversion efficiency up to 16.0%via forming a cascade energy band structure.展开更多
A new facile method for preparing water-soluble near-infrared (NIR)-emitting PbS quantum dots (QDs) is proposed by using N-acetyl-L-cysteine (NAC, a derivate of L-cysteine) as its stabilizer. The influence of th...A new facile method for preparing water-soluble near-infrared (NIR)-emitting PbS quantum dots (QDs) is proposed by using N-acetyl-L-cysteine (NAC, a derivate of L-cysteine) as its stabilizer. The influence of the precursor Pb/S molar ratio, the Pb/NAC molar ratio, and the pH of original solution on optical properties is explored. Results show that aqueous PbS QDs with strong NIR fluorescence can be prepared and their photoluminescence emission peaks can be tuned from 895 nm to 970 nm. Studies indicate that such aqueous QDs have a potential application in biomedical imaging, especially in noninvasive in vivo fluorescence imaging. In addition, the resulting PbS QDs are further characterized by a transmission electron microscopy and X-ray diffraction analysis.展开更多
Quantum dot infrared photodetectors are expected to be a competitive technology at high oper ation temperatures in the long and very long wavelength infrared spectral range.Despite the fact that they already achieved ...Quantum dot infrared photodetectors are expected to be a competitive technology at high oper ation temperatures in the long and very long wavelength infrared spectral range.Despite the fact that they already achieved notable success,the performance suffers from the thermionic emission of electrons from the quantum dots at elevated temperatures resulting in a decreasing responsivity.In order to provide an efficient carrier injection at high temperatures,quantum dot infrared photodetectors can be separated into two parts:an injection part and a detection part,so that each part can be separately optimized.In order to integrate such functionality into a device,a new class of quantum dot infrared photodetectors using quantum dot molecules will be introduced.In addition to a general discussion simulation results suggest a possibility to realize such a device.展开更多
Zero-dimensional(0D)carbon quantum dots(CQDs),as a nanocarbon material in the carbon family,have garnered increasing attention in recent years due to their outstanding features of low cost,nontoxicity,large surface ar...Zero-dimensional(0D)carbon quantum dots(CQDs),as a nanocarbon material in the carbon family,have garnered increasing attention in recent years due to their outstanding features of low cost,nontoxicity,large surface area,high electrical conductivity,and rich surface functional groups.By virtue of their rapid electron transfer and large surface area,CQDs also emerge as promising functional materials for the applications in energy-conversion sectors through electrocatalysis.Besides,the rich functional groups on the surface of CQDs offer abundant anchoring sites and active sites for the engineering of multicomponent and high-performance composite materials.More importantly,the heteroatom in the CQDs could effectively tailor the charge distribution to promote the electron transfer via internal interactions,which is crucial to the enhancement of electrocatalytic performance.Herein,an overview about recent progress in preparing CQDs-based composites and employing them as promising electrode materials to promote the catalytic activity and stability for electrocatalysis is provided.The introduced CQDs could enhance the conductivity,modify the morphology and crystal phase,optimize the electronic structure,and provide more active centers and defect sites of composites.After establishing a deep understanding of the relationship between CQDs and electrocatalytic performances,the issues and challenges for the development of CQDs-based composites are discussed.展开更多
基金supported by the open research fund of Songshan Lake Materials Laboratory (2022SLABFN26)the National Natural Science Foundation of China (21773024)+1 种基金the Sichuan Science and Technology program (2020YJ0324,2020YJ0262)the Reformation and Development Funds for Local Region Universities from China Government in 2020 (ZCKJ 2020-11)。
文摘The shuttle effect of lithium polysulfides(LiPSs)and uncontrollable lithium dendrite growth seriously hinder the practical application of lithium-sulfur(Li-S)batteries.To simultaneously address such issues,monodispersed Nb N quantum dots anchored on nitrogen-doped hollow carbon nanorods(NbN@NHCR)are elaborately developed as efficient Li PSs immobilizer and Li stabilizer for high-performance Li-S full batteries.Density functional theory(DFT)calculations and experimental characterizations demonstrate that the sulfiphilic and lithiophilic NbN@NHCR hybrid can not only efficiently immobilize the soluble Li PSs and facilitate diffusion-conversion kinetics for alleviating the shuttling effect,but also homogenize the distribution of Li+ions and regulate uniform Li deposition for suppressing Li-dendrite growth.As a result,the assembled Li-S full batteries(NbN@NHCR-S||Nb N@NHCR-Li)deliver excellent long-term cycling stability with a low decay rate of 0.031%per cycle over 1000 cycles at high rate of 2 C.Even at a high S loading of 5.8 mg cm^(-2)and a low electrolyte/sulfur ratio of 5.2μL mg^(-1),a large areal capacity of 6.2 mA h cm^(-2)can be achieved in Li-S pouch cell at 0.1 C.This study provides a new perspective via designing a dual-functional sulfiphilic and lithiophilic hybrid to address serious issues of the shuttle effect of S cathode and dendrite growth of Li anode.
基金This work was financially supported by the National Key Research and Development Program of China(2022YFB3602902)the Key Projects of National Natural Science Foundation of China(62234004)+5 种基金Innovation and Entrepreneurship Team of Zhejiang Province(2021R01003)Science and Technology Innovation 2025 Major Project of Ningbo(2022Z085)Ningbo 3315 Programme(2020A-01-B)YONGJIANG Talent Introduction Programme(2021A-038-B)Flexible Electronics Zhejiang Province Key Laboratory Fund Project(2022FEO02)Zhejiang Provincial Natural Science Foundation of China(LR21F050001).
文摘CsPbI_(3)perovskite quantum dots(QDs)are ideal materials for the next generation of red light-emitting diodes.However,the low phase stability of CsPbI_(3)QDs and long-chain insulating capping ligands hinder the improvement of device performance.Traditional in-situ ligand replacement and ligand exchange after synthesis were often difficult to control.Here,we proposed a new ligand exchange strategy using a proton-prompted insitu exchange of short 5-aminopentanoic acid ligands with long-chain oleic acid and oleylamine ligands to obtain stable small-size CsPbI_(3)QDs.This exchange strategy maintained the size and morphology of CsPbI_(3)QDs and improved the optical properties and the conductivity of CsPbI_(3)QDs films.As a result,high-efficiency red QD-based light-emitting diodes with an emission wavelength of 645 nm demonstrated a record maximum external quantum efficiency of 24.45%and an operational half-life of 10.79 h.
基金The authors thank the Deanship of Scientific Research at King Khalid University for funding this work through a large group Research Project under grant number(R.G.P.2/123/44).The author MBK would like to thank Prince Sultan University for their support.
文摘This research investigates the hydrothermal synthesis and annealing duration effects on nickel sulfide(NiS_(2) quantum dots(QDs)for catalytic decolorization of methylene blue(MB)dye and antimicrobial efficacy.QD size increased with longer annealing,reducing catalytic activity.UV–vis,XRD,TEM,and FTIR analyses probed optical structural,morphological,and vibrational features.XRD confirmed NiS2's anorthic structure,with crystallite size growing from 6.53 to 7.81 nm during extended annealing.UV–Vis exhibited a bathochromic shift,reflecting reduced band gap energy(Eg)in NiS_(2).TEM revealed NiS_(2)QD formation,with agglomerated QD average size increasing from 7.13 to 9.65 nm with prolonged annealing.Pure NiS_(2) showed significant MB decolorization(89.85%)in acidic conditions.Annealed NiS_(2) QDs demonstrated notable antibacterial activity,yielding a 6.15mm inhibition zone against Escherichia coli(E.coli)compared to Ciprofloxacin.First-principles computation supported a robust interaction between MB and NiS_(2),evidenced by obtained adsorption energies.This study highlights the nuanced relationship between annealing duration,structural changes,and functional properties in NiS_(2)QDs,emphasizing their potential applications in catalysis and antibacterial interventions.
基金National Natural Science Foundation of China (Grant No. 62374065)Interdisciplinary Research promotion of HUST (No. 2023JCYJ040)+2 种基金Innovation Project of Optics Valley Laboratory (No. OVL2021BG008)Program of Science Technology of Wenzhou City (No. G20210011)financial support from the Innovation and Technology Commission (Grant no. MHP/104/21)。
文摘Lead sulfide quantum dots(PbS QDs) hold unique characteristics, including bandgap tunability, solutionprocessability etc., which make them highly applicable in tandem solar cells(TSCs). In all QD TSCs, its efficiency lags much behind to their single junction counterparts due to the deficient interconnection layer(ICL) and defective subcells. To improve TSCs performance, we developed three kinds of ICL structures based on 1.34 and 0.96 e V PbS QDs subcells. The control, 1,2-ethanedithiol capped PbS QDs(PbS-EDT)/Au/tin dioxide(SnO_(2))/zinc oxide(Zn O), utilized SnO_(2) layer to obtain high surface compactness.However, its energy level mismatch causes incomplete recombination. Bypassing it, the second ICL(PbS-EDT/Au/Zn O) removed SnO_(2) and boosted the power conversion efficiency(PCE) from 5.75% to 8.69%. In the third ICL(PbS-EDT/poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine](PTAA)/Au/Zn O), a thin layer of PTAA can effectively fill fissures on the surface of PbS-EDT and also protect the front cells from solvent penetration. This TSC obtained a PCE of 9.49% with an open circuit voltage of 0.91 V, a short circuit current density of 15.47 m A/cm~2, and a fill factor of 67.7%. To the best of our knowledge, this was the highest PCE achieved by all PbS QD TSCs reported to date. These TSCs maintained stable performance for a long working time under ambient conditions.
基金supported by the National Natural Science Foundation of China(Grant No.52102266,12204167)the China Postdoctoral Science Foundation(2020M680861)+4 种基金the support from the Department of Science and Technology-Science and Engineering Research Board(DST-SERB),Government of India(project no.SRG/2020/000258)CSIR-Indian Institute of Chemical Technology,Hyderabadsupported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.2022R1A5A1032539,2022R1C1C1008282)Industrial Strategic Technology Development Program-Alchemist Project(1415180859,Chiral perovskite LED smart contact lens based hyper vision metaverse)funded by the Ministry of Trade,Industry&Energy(MOTIE,Korea)Korea Evaluation Institute of Industrial Technology(KEIT,Korea).
文摘As lead halide perovskite(LHP)semiconductors have shown tremendous promise in many application fields,and particularly made strong impact in the solar photovoltaic area,low dimensional quantum dot forms of these perovskites are showing the potential to make distinct marks in the fields of electronics,optoelectronics and photonics.The so-called perovskite quantum dots(PQDs)not only possess the most important features of LHP materials,i.e.,the unusual high defect tolerance,but also demonstrate clear quantum size effects,along with exhibiting desirable optoelectronic properties such as near perfect photoluminescent quantum yield,multiple exciton generation and slow hot-carrier cooling.Here,we review the advantageous properties of these nanoscale perovskites and survey the prospects for diverse applications which include lightemitting devices,solar cells,photocatalysts,lasers,detectors and memristors,emphasizing the distinct superiorities as well as the challenges.
基金supported by the National Natural Science Foundation of China(52106089).
文摘Thermal management of nanoscale quantum dots(QDs)in light-emitting devices is a long-lasting challenge.The existing heat transfer reinforcement solutions for QDs-polymer composite mainly rely on thermal-conductive fillers.However,this strategy failed to deliver the QDs’heat generation across a long distance,and the accumulated heat still causes considerable temperature rise of QDs-polymer composite,which eventually menaces the performance and reliability of lightemitting devices.Inspired by the radially aligned fruit fibers in oranges,we proposed to eliminate this heat dissipation challenge by establishing long-range ordered heat transfer pathways within the QDs-polymer composite.Ultrahigh molecular weight polyethylene fibers(UPEF)were radially aligned throughout the polymer matrix,thus facilitating massive efficient heat dissipation of the QDs.Under a UPEF filling fraction of 24.46 vol%,the in-plane thermal conductivity of QDs-radially aligned UPEF composite(QDs-RAPE)could reach 10.45 W m^(−1) K^(−1),which is the highest value of QDs-polymer composite reported so far.As a proof of concept,the QDs’working temperature can be reduced by 342.5℃ when illuminated by a highly concentrated laser diode(LD)under driving current of 1000 mA,thus improving their optical performance.This work may pave a new way for next generation high-power QDs lighting applications.
基金Project supported by the National Natural Science Foundation of China (Grant No.11834005)。
文摘The combination of non-Hermitian physics and Majorana fermions can give rise to new effects in quantum transport systems. In this work, we investigate the interplay of PT-symmetric complex potentials, Majorana tunneling and interdot tunneling in a non-Hermitian double quantum dots system. It is found that in the weak-coupling regime the Majorana tunneling has pronounced effects on the transport properties of such a system, manifested as splitting of the single peak into three and a reduced 1/4 peak in the transmission function. In the presence of the PT-symmetric complex potentials and interdot tunneling, the 1/4 central peak is robust against them, while the two side peaks are tuned by them. The interdot tunneling only induces asymmetry, instead of moving the conductance peak, due to the robustness of the Majorana modes. There is an exceptional point induced by the union of Majorana tunneling and interdot tunneling. With increased PT-symmetric complex potentials, the two side peaks will move towards each other. When the exceptional point is passed through, these two side peaks will disappear. In the strong-coupling regime, the Majorana fermion induces a 1/4 conductance dip instead of the three-peak structure. PT-symmetric complex potentials induce two conductance dips pinned at the exceptional point. These effects should be accessible in experiments.
基金supported by National Natural Science Foundation of China(Grant Nos.52272166,22205214,and 12204427).
文摘Ag-In-Ga-S(AIGS)quantum dots(QDs)have recently attracted great interests due to the outstanding optical properties and eco-friendly components,which are considered as an alternative replacement for toxic Pb-and Cd-based QDs.However,enormous attention has been paid to how to narrow their broadband spectra,ignoring the application advantages of the broadband emission.In this work,the AIGS QDs with controllable broad green-red dual-emission are first reported,which is achieved through adjusting the size distribution of QDs by controlling the nucleation and growth of AIGS crystals.Resultantly,the AIGS QDs exhibit broad dual-emission at green-and red-band evidenced by photoluminescence(PL)spectra,and the PL relative intensity and peak position can be finely adjusted.Furthermore,the dual-emission is the intrinsic characteristics from the difference in confinement effect of large particles and tiny particles confirmed by temperature-dependent PL spectra.Accordingly,the AIGS QDs(the size consists of 17 nm and 3.7 nm)with 530 nm and 630 nm emission could successfully be synthesized at 220°C.By combining the blue light-emitting diode(LED)chips and dual-emission AIGS QDs,the constructed white light-emitting devices(WLEDs)exhibit a continuous and broad spectrum like natural sunlight with the Commission Internationale de l’Eclairage(CIE)chromaticity coordinates of(0.33,0.31),a correlated color temperature(CCT)of 5425 K,color rendering index(CRI)of 90,and luminous efficacy of radiation(LER)of 129 lm/W,which indicates that the AIGS QDs have huge potential for lighting applications.
基金supported by National Research Foundation of Korea (NRF)funded by the Ministry of Education (2021R1A6A1A03039696,2022R1A2C2009412)
文摘Two-dimensional(2D)transition metal dichalcogenides(TMD)are atomically thin semiconductors with promising optoelectronic applications across the visible spectrum.However,their intrinsically weak light absorption and the low photoluminescence quantum yield(PLQY)restrict their performance and potential use,especially in ultraviolet(UV)wavelength light ranges.Quantum dots(QD)derived from 2D materials(2D/QD)provide efficient light absorption and emission of which energy can be tuned for desirable light wavelength.In this study,we greatly enhanced the photon absorption and PLQY of monolayer(1L)tungsten disulfide(WS_(2))in the UV range via hybridization with 2D/QD,particularly titanium nitride MXene QD(Ti_(2)N MQD)and graphitic carbon nitride QD(GCNQD).With the hybridization of MQD or GCNQD,1LWS_(2)showed a maximum PL enhancement by 15 times with 300 nm wavelength excitation,while no noticeable enhancement was observed when the excitation photon energy was less than the bandgap of the QD,indicating that UV absorption by the QD played a crucial role in enhancing the light emission of 1L-WS_(2)in our 0D/2D hybrid system.Our findings present a convenient method for enhancing the photo-response of 1L-WS_(2)to UV light and offer exciting possibilities for harvesting UV energy using 1L-TMD.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12074368,92165207,12034018,and 62004185)the Anhui Province Natural Science Foundation (Grant No.2108085J03)the USTC Tang Scholarship。
文摘The single-shot readout data process is essential for the realization of high-fidelity qubits and fault-tolerant quantum algorithms in semiconductor quantum dots. However, the fidelity and visibility of the readout process are sensitive to the choice of the thresholds and limited by the experimental hardware. By demonstrating the linear dependence between the measured spin state probabilities and readout visibilities along with dark counts, we describe an alternative threshold-independent method for the single-shot readout of spin qubits in semiconductor quantum dots. We can obtain the extrapolated spin state probabilities of the prepared probabilities of the excited spin state through the threshold-independent method. We then analyze the corresponding errors of the method, finding that errors of the extrapolated probabilities cannot be neglected with no constraints on the readout time and threshold voltage. Therefore, by limiting the readout time and threshold voltage, we ensure the accuracy of the extrapolated probability. We then prove that the efficiency and robustness of this method are 60 times larger than those of the most commonly used method. Moreover, we discuss the influence of the electron temperature on the effective area with a fixed external magnetic field and provide a preliminary demonstration for a single-shot readout of up to 0.7K/1.5T in the future.
文摘The performance of the photodetector is significantly impacted by the inherent surface faults in GaAs nanowires(NWs).We combined three-dimensional(3D)gallium arsenide nanowires with zero-dimensional(0D)WS_(2) quantum dot(QDs)materials in a simple and convenient way to form a heterogeneous structure.Various performance enhancements have been realized through the formation of typeⅡenergy bands in heterostructures,opening up new research directions for the future development of photodetector devices.This work successfully fabricated a high-sensitivity photodetector based on WS_(2)QDs/GaAs NWs heterostructure.Under 660 nm laser excitation,the photodetector exhibits a responsivity of 368.07 A/W,a detectivity of 2.7×10^(12)Jones,an external quantum efficiency of 6.47×10^(2)%,a low-noise equivalent power of 2.27×10^(-17)W·Hz^(-1/2),a response time of 0.3 s,and a recovery time of 2.12 s.This study provides a new solution for the preparation of high-performance GaAs detectors and promotes the development of optoelectronic devices for GaAs NWs.
基金supported by the National Natural Science Foundation of China(Grant Nos.12274454,11774418,11374363,11674317,11974348,11834014,and 21373191)the Strategic Priority Research Program of CAS(Grant Nos.XDB28000000 and XDB33000000)+2 种基金the National Natural Science Foundation of China(Grant No.11974348)the Training Program of Major Research Plan of NSFC(Grant No.92165105)the Outstanding Innovative Talents Cultivation Funded Programs 2023 of Renmin University of China。
文摘We utilize the calculation of hierarchical equations of motion to demonstrate that the spin-dependent properties between adjacent quantum dots(QDs)can be changed by breaking the internal symmetry configuration,corresponding to the inversion of dominant chiral states.In the linear triple quantum dots(LTQDs)connected to two electron reservoirs,we can observe that the blockage appears at the triangle triple quantum dots(TTQDs)by gradually increasing the coupling strength between next-nearest double QDs.When the initial coupling between LTQDs has altered,the internal chiral circulation also undergoes the corresponding transform,thus achieving qualitative regulation and detection of the blocking region.We also investigate the response of the chiral circulation to the dot–lead coupling strength,indicating the overall robust chiral circulation of the TTQDs frustration.
基金supported by the following research fundings including:the National Natural Science Foundation of China(Nos.62005114,62204078 and U22A2072)Natural Science Foundation of Henan-Excellent Youth Scholar(No.232300421092)Open Fund of the State Key Laboratory of Integrated Optoelectronics+(IOSKL2020KF01).
文摘Quantum dot-based up-conversion photodetector,in which an infrared photodiode(PD)and a quantum dot light-emitting diode(QLED)are back-to-back connected,is a promising candidate for low-cost infrared imaging.However,the huge efficiency losses caused by integrating the PD and QLED together hasn’t been studied sufficiently.This work revealed at least three origins for the efficiency losses.First,the PD unit and QLED unit usually didn’t work under optimal conditions at the same time.Second,the potential barriers and traps at the interconnection between PD and QLED units induced unfavorable carrier recombination.Third,much emitted visible light was lost due to the strong visible absorption in the PD unit.Based on the understandings on the loss mechanisms,the infrared up-conversion photodetectors were optimized and achieved a breakthrough photon-to-photon conversion efficiency of 6.9%.This study provided valuable guidance on how to optimize the way of integration for up-conversion photodetectors.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61274134,91433205,51372270,51402348,51421002,21173260,11474333,51372272,and 51627803)the Knowledge Innovation Program of the Chinese Academy of Sciences+2 种基金the Natural Science Foundation of Beijing,China(Grant No.4173077)USTB Talent Program,China(Grant No.06500053)Fundamental Research Funds for the Central Universities,China(Grant Nos.FRF-BR-16-018A,FRF-TP-17-069A1,and 06198178)
文摘Colloidal quantum dot (CQD) solar cells have attracted great interest due to their low cost and superior photo-electric properties. Remarkable improvements in cell performances of both quantum dot sensitized solar cells (QDSCs) and FbX (X = S, Se) based CQD solar cells have been achieved in recent years, and the power conversion efficiencies (PCEs) ex- ceeding 12% were reported so far. In this review, we will focus on the recent progress in CQD solar cells. We firstly summarize the advance of CQD sensitizer materials and the strategies for enhancing carrier collection efficiency in QD- SCs, including developing multi-component alloyed CQDs and core-shell structured CQDs, as well as various methods to suppress interfacial carrier recombination. Then, we discuss the device architecture development of PbX CQD based solar cells and surface/interface passivation methods to increase light absorption and carrier extraction efficiencies. Finally, a short summary, challenge, and perspective are given.
基金supported by the Japan Science and Technology Agency(JST)CREST programBeijing Advanced Innovation Center for Future Urban Design,Beijing University of Civil Engineering and Architecture(Grant UDC2018031121)+3 种基金the MEXT KAKENHI(Grant 17H02736)the Natural Science Foundation of Shaanxi Province(2019JQ-423)the Fundamental Research Funds for the Central Universities(GK201903053)Key Lab of Photovoltaic and Energy Conservation Materials,Chinese Academy of Sciences(No.PECL2019KF019)for financial support.
文摘Solution-processed colloidal quantum dot solar cells(CQDSCs) is a promising candidate for new generation solar cells.To obtain stable and high performance lead sulfide(PbS)-based CQDSCs,high carrier mobility and low non-radiative recombination center density in the PbS CQDs active layer are required.In order to effectively improve the carrier mobility in PbS CQDs layer of CQDSCs,butylamine(BTA)-modified graphene oxide(BTA@GO) is first utilized in PbS-PbX2(X=I-,Br-) CQDs ink to deposit the active layer of CQDSCs through one-step spin-coating method.Such surface treatment of GO dramatically upholds the intrinsic superior hole transfer peculiarity of GO and attenuates the hydrophilicity of GO in order to allow for its good dispersibility in ink solvent.The introduction of B TA@GO in CQDs layer can build up a bulk nano-heterojunction architecture,which provides a smooth charge carrier transport channel in turn improves the carrier mobility and conductivity,extends the carriers lifetime and reduces the trap density of PbS-PbX2 CQDs film.Finally,the BTA@GO/PbS-PbX2 hybrid CQDs film-based relatively large-area(0.35 cm2) CQDSCs shows a champion power conversion efficiency of 11.7% which is increased by 23.1% compared with the control device.
基金This work was supported by National Research Foundation of Korea(NRF)grants funded by Ministry of Science and ICT(MSIT)(Nos.2021R1A2C3004420,2022M3J1A1085282,2020R1C1C1012256 and 2020R1C1C1003214)the NRF of Korea grant funded by the Korean Government(NRF-2019-Global Ph.D.Fellowship Program.
文摘Perovskite quantum dots(PQDs)have been considered promising and effective photovoltaic absorber due to their superior optoelectronic properties and inherent material merits combining perovskites and QDs.However,they exhibit low moisture stability at room humidity(20-30%)owing to many surface defect sites generated by inefficient ligand exchange process.These surface traps must be re-passivated to improve both charge transport ability and moisture stability.To address this issue,PQD-organic semiconductor hybrid solar cells with suitable electrical properties and functional groups might dramatically improve the charge extraction and defect passivation.Conventional organic semiconductors are typically low-dimensional(1D and 2D)and prone to excessive self-aggregation,which limits chemical interaction with PQDs.In this work,we designed a new 3D star-shaped semiconducting material(Star-TrCN)to enhance the compatibility with PQDs.The robust bonding with Star-TrCN and PQDs is demonstrated by theoretical modeling and experimental validation.The Star-TrCN-PQD hybrid films show improved cubic-phase stability of CsPbI_(3)-PQDs via reduced surface trap states and suppressed moisture penetration.As a result,the resultant devices not only achieve remarkable device stability over 1000 h at 20-30%relative humidity,but also boost power conversion efficiency up to 16.0%via forming a cascade energy band structure.
基金Supported by the National Natural Science Foundation of China (30800257,30700799)the Scien-tific Research Starting Foundation for Introduced Talented Persons of China Pharmaceutical University~~
文摘A new facile method for preparing water-soluble near-infrared (NIR)-emitting PbS quantum dots (QDs) is proposed by using N-acetyl-L-cysteine (NAC, a derivate of L-cysteine) as its stabilizer. The influence of the precursor Pb/S molar ratio, the Pb/NAC molar ratio, and the pH of original solution on optical properties is explored. Results show that aqueous PbS QDs with strong NIR fluorescence can be prepared and their photoluminescence emission peaks can be tuned from 895 nm to 970 nm. Studies indicate that such aqueous QDs have a potential application in biomedical imaging, especially in noninvasive in vivo fluorescence imaging. In addition, the resulting PbS QDs are further characterized by a transmission electron microscopy and X-ray diffraction analysis.
文摘Quantum dot infrared photodetectors are expected to be a competitive technology at high oper ation temperatures in the long and very long wavelength infrared spectral range.Despite the fact that they already achieved notable success,the performance suffers from the thermionic emission of electrons from the quantum dots at elevated temperatures resulting in a decreasing responsivity.In order to provide an efficient carrier injection at high temperatures,quantum dot infrared photodetectors can be separated into two parts:an injection part and a detection part,so that each part can be separately optimized.In order to integrate such functionality into a device,a new class of quantum dot infrared photodetectors using quantum dot molecules will be introduced.In addition to a general discussion simulation results suggest a possibility to realize such a device.
基金supported by The Natural Science Foundation of the Jiangsu Higher Education Institutions of China(19KJB150019)Youth Science and Technology Talents Enrollment Project of the Jiangsu Association of Science and Technology。
文摘Zero-dimensional(0D)carbon quantum dots(CQDs),as a nanocarbon material in the carbon family,have garnered increasing attention in recent years due to their outstanding features of low cost,nontoxicity,large surface area,high electrical conductivity,and rich surface functional groups.By virtue of their rapid electron transfer and large surface area,CQDs also emerge as promising functional materials for the applications in energy-conversion sectors through electrocatalysis.Besides,the rich functional groups on the surface of CQDs offer abundant anchoring sites and active sites for the engineering of multicomponent and high-performance composite materials.More importantly,the heteroatom in the CQDs could effectively tailor the charge distribution to promote the electron transfer via internal interactions,which is crucial to the enhancement of electrocatalytic performance.Herein,an overview about recent progress in preparing CQDs-based composites and employing them as promising electrode materials to promote the catalytic activity and stability for electrocatalysis is provided.The introduced CQDs could enhance the conductivity,modify the morphology and crystal phase,optimize the electronic structure,and provide more active centers and defect sites of composites.After establishing a deep understanding of the relationship between CQDs and electrocatalytic performances,the issues and challenges for the development of CQDs-based composites are discussed.