期刊文献+
共找到18篇文章
< 1 >
每页显示 20 50 100
基于粒子群优化算法的量子卷积神经网络 被引量:1
1
作者 张嘉雯 蔡彬彬 林崧 《量子电子学报》 北大核心 2025年第1期123-135,共13页
针对当前量子卷积神经网络模型中参数化量子电路缺乏自适应目标选择策略的问题,提出了一种基于粒子群优化算法自动优化电路的量子卷积神经网络模型。该模型通过将量子电路编码为粒子,并利用粒子群优化算法对电路进行优化,从而搜索出在... 针对当前量子卷积神经网络模型中参数化量子电路缺乏自适应目标选择策略的问题,提出了一种基于粒子群优化算法自动优化电路的量子卷积神经网络模型。该模型通过将量子电路编码为粒子,并利用粒子群优化算法对电路进行优化,从而搜索出在图像分类任务上表现优异的电路结构。基于Fashion MNIST和MNIST标准数据集的仿真实验表明,该模型具有较强的学习能力和良好的泛化性能,准确率分别可达94.7%和99.05%。相较于现有量子卷积神经网络模型,平均分类精度最高分别提升了4.14%和1.43%。 展开更多
关键词 量子光学 量子卷积神经网络 粒子群优化算法 量子机器学习 参数化量子电路
在线阅读 下载PDF
一种基于混合量子卷积神经网络的恶意代码检测方法 被引量:1
2
作者 熊其冰 苗启广 +2 位作者 杨天 袁本政 费洋扬 《计算机科学》 北大核心 2025年第3期385-390,共6页
量子计算是基于量子力学的全新计算模式,具有远超经典计算的强大并行计算能力。混合量子卷积神经网络结合了量子计算和经典卷积神经网络的双重优势,逐渐成为量子机器学习领域的研究热点之一。当前,恶意代码规模依然呈高速增长态势,检测... 量子计算是基于量子力学的全新计算模式,具有远超经典计算的强大并行计算能力。混合量子卷积神经网络结合了量子计算和经典卷积神经网络的双重优势,逐渐成为量子机器学习领域的研究热点之一。当前,恶意代码规模依然呈高速增长态势,检测模型越来越复杂,参数量越来越大,迫切需要一种高效轻量型的检测模型。为此,设计了一种混合量子卷积神经网络模型,将量子计算融入经典卷积神经网络,以提高模型的计算效率。该模型包含量子卷积层、池化层和经典全连接层。量子卷积层采用低深度强纠缠轻量型的参数化量子线路实现,仅使用两类量子门:量子旋转门Ry和受控非门CNOT(controlled-NOT),并仅使用两量子比特实现卷积计算。池化层基于经典计算和量子计算实现了3种池化方法。在Google TensorFlow Quantum上进行了模拟实验。实验结果显示,所提模型在恶意代码公开数据集DataCon2020和Ember的分类性能(accuracy,F1-score)分别达到了(97.75%,97.71%)和(94.65%,94.78%),均有明显提升。 展开更多
关键词 量子计算 量子机器学习 混合量子卷积神经网络 恶意代码检测
在线阅读 下载PDF
ECG-QGAN:基于量子生成对抗网络的心电图生成式信息系统
3
作者 瞿治国 陈韦龙 +2 位作者 孙乐 刘文杰 张彦春 《计算机研究与发展》 北大核心 2025年第7期1622-1638,共17页
据统计,我国心血管疾病患病人数约达3.3亿,每年因为心血管疾病死亡的人数占总死亡人数的40%.在这种背景下,心脏病辅助诊断系统的发展显得尤为重要,但其开发受限于缺乏不含患者隐私信息和由医疗专家标注的大量心电图(electrocardiogram,E... 据统计,我国心血管疾病患病人数约达3.3亿,每年因为心血管疾病死亡的人数占总死亡人数的40%.在这种背景下,心脏病辅助诊断系统的发展显得尤为重要,但其开发受限于缺乏不含患者隐私信息和由医疗专家标注的大量心电图(electrocardiogram,ECG)临床数据.作为一门新兴学科,量子计算可通过利用量子叠加和纠缠特性,能够探索更大、更复杂的状态空间,进而有利于生成同临床数据一样的高质量和多样化的ECG数据.为此,提出了一种基于量子生成对抗网络(QGAN)的ECG生成式信息系统,简称ECG-QGAN.其中QGAN由量子双向门控循环单元(quantum bidirectional gated recurrent unit,QBiGRU)和量子卷积神经网络(quantum convolutional neural network,QCNN)组成.该系统利用量子的纠缠特性提高生成能力,以生成与现有临床数据一致的ECG数据,从而可以保留心脏病患者的心跳特征.该系统的生成器和判别器分别采用QBiGRU和QCNN,并应用了基于矩阵乘积状态(matrix product state,MPS)和树形张量网络(tree tensor network,TTN)所设计的变分量子电路(variational quantum circuit,VQC),可以使该系统在较少的量子资源下更高效地捕捉ECG数据信息,生成合格的ECG数据.此外,该系统应用了量子Dropout技术,以避免训练过程中出现过拟合问题.最后,实验结果表明,与其他生成ECG数据的模型相比,ECG-QGAN生成的ECG数据具有更高的平均分类准确率.同时它在量子位数量和电路深度方面对当前噪声较大的中尺度量子(noise intermediate scale quantum,NISQ)计算机是友好的. 展开更多
关键词 生成式信息系统 心电图 量子生成对抗网络 量子双向门控循环单元 量子卷积神经网络
在线阅读 下载PDF
基于QCNN的非线性跟踪问题研究 被引量:1
4
作者 牛德智 陈长兴 +3 位作者 符辉 赵延明 屈坤 王旭婧 《计算机应用研究》 CSCD 北大核心 2013年第12期3634-3637,共4页
针对如何快速准确地跟踪到非线性系统的状态问题,研究了量子细胞神经网络(QCNN)在非线性跟踪中的应用。在满足Lyapunov函数指数收敛的条件下,设计了一种新型参数形式的控制器,在此基础上,对三种非线性系统即确定性非线性运动、参数和运... 针对如何快速准确地跟踪到非线性系统的状态问题,研究了量子细胞神经网络(QCNN)在非线性跟踪中的应用。在满足Lyapunov函数指数收敛的条件下,设计了一种新型参数形式的控制器,在此基础上,对三种非线性系统即确定性非线性运动、参数和运动规律未知的非线性数据系统以及典型蔡氏电路进行了QCNN跟踪研究。仿真结果表明,在QCNN系统中,通过设计合理的控制器可以实现非线性问题状态的有效跟踪,且实验结果为QCNN系统复杂度与跟踪的及时性之间关系提供了参考依据和有力的说明。设计的新型控制器及对实际问题处理方法为QCNN的理论及应用研究具有借鉴意义。 展开更多
关键词 量子细胞神经网络 非线性跟踪 LYAPUNOV函数 控制器 蔡氏电路
在线阅读 下载PDF
基于量子卷积神经网络的ARX分组密码区分器
5
作者 秦广雪 李丽莎 《信息网络安全》 北大核心 2025年第3期467-477,共11页
随着量子计算机的发展,量子神经网络技术不断取得新突破。尽管当前量子计算环境受限,但探索量子神经网络的潜在应用对未来科学技术发展具有重要意义。量子卷积神经网络结合量子计算的优势和神经网络强大的特征提取能力,在二分类任务上... 随着量子计算机的发展,量子神经网络技术不断取得新突破。尽管当前量子计算环境受限,但探索量子神经网络的潜在应用对未来科学技术发展具有重要意义。量子卷积神经网络结合量子计算的优势和神经网络强大的特征提取能力,在二分类任务上表现优异。文章提出一种量子卷积神经区分器,数据特征之间不分块而是作为一个整体编码到量子电路,然后训练参数化量子卷积电路。以SPECK-32为例,使用8个量子比特运行5轮的准确率为76.8%,超越了同等资源条件下的经典区分器,并成功运行到第6轮。文章对比了卷积电路和硬件高效Ansatz作为训练电路的量子神经区分器,结果表明前者具有更高的效率。此外,文章所提区分器成功运行了减轮的Speckey、LAX32、SIMON-32和SIMECK-32算法。最后,分析了影响量子卷积神经区分器性能的因素。 展开更多
关键词 量子卷积神经网络 量子计算 分组密码 区分器
在线阅读 下载PDF
基于多源信息融合告警的微电网故障定位方法研究
6
作者 杨志淳 李牧远 +3 位作者 韩佶 杨帆 沈煜 闵怀东 《电测与仪表》 北大核心 2025年第6期45-55,共11页
针对故障诊断数据来源单一导致结果抗噪性和鲁棒性差问题,文章提出一种融合多源告警信息的微电网继电保护故障定位方法。基于对称分量法对微电网故障进行建模,通过求解正、负序网络微分方程,实现对短路故障的特性分析。采用相似性计算... 针对故障诊断数据来源单一导致结果抗噪性和鲁棒性差问题,文章提出一种融合多源告警信息的微电网继电保护故障定位方法。基于对称分量法对微电网故障进行建模,通过求解正、负序网络微分方程,实现对短路故障的特性分析。采用相似性计算对数据进行处理并进行可视化,通过卷积神经网络对故障信息进行辨识,实现告警信息智能生成。采用开关函数法对多源告警信息进行加权融合,并采用改进二进制量子粒子群算法对故障模型进行求解。最后,在改进IEEE 33系统中进行了算例分析,结果表明,所提方法能够准确生成故障告警信息并快速定位故障,且在多点信息畸变下仍具有较高的定位精度效果。 展开更多
关键词 故障定位 微电网故障告警 多源信息融合 二进制量子粒子群 卷积神经网络
在线阅读 下载PDF
基于混沌云量子蝙蝠CNN-GRU大坝变形智能预报方法研究 被引量:7
7
作者 陈以浩 李明伟 +2 位作者 安小刚 王宇田 徐瑞喆 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2024年第1期110-118,共9页
针对大坝变形影响因素复杂、精准预报难度较大问题,为了提高在大坝安全管理过程中大坝变形的预报精度,本文从大坝变形非线性动力系统时间序列的强非线性出发,引入深度卷积神经网络,对大坝变形及其空间影响特性进行挖掘,引入门控循环单元... 针对大坝变形影响因素复杂、精准预报难度较大问题,为了提高在大坝安全管理过程中大坝变形的预报精度,本文从大坝变形非线性动力系统时间序列的强非线性出发,引入深度卷积神经网络,对大坝变形及其空间影响特性进行挖掘,引入门控循环单元,对大坝变形的时域特性进行挖掘,构建应用于大坝变形预报的深度卷积神经网络-门控循环单元大坝变形组合深度学习网络;同时,为了获取深度卷积神经网络-门控循环单元组合网络的最佳超参,引入了混沌云量子蝙蝠算法,建立了基于混沌云量子蝙蝠算法算法的深度卷积神经网络-门控循环单元组合网络超参优选方法;最后,提出了深度卷积神经网络-门控循环单元-混沌云量子蝙蝠算法大坝变形组合深度学习智能预报方法。基于实测数据开展预报研究,对比结果表明:与对比模型相比,提出的深度卷积神经网络-门控循环单元-混沌云量子蝙蝠算法预报方法取得了更精确的预报结果,混沌云量子蝙蝠算法算法用于超参优选获得了更佳的超参组合。 展开更多
关键词 大坝变形预测 卷积神经网络 门控循环单元 蝙蝠算法 量子力学 混沌理论 非线性动力系统模拟与预测 深度学习
在线阅读 下载PDF
42CrMo钢精密切削的刀具磨损量预测研究 被引量:1
8
作者 成钢 唐昆 +4 位作者 刘庞中 刘子聪 袁剑平 胡永乐 毛聪 《工具技术》 北大核心 2024年第3期138-143,共6页
针对42CrMo钢精密切削刀具磨损量预测研究小样本、非线性的特点,将量子粒子群算法(QPSO)、卷积神经网络(CNN)及长短期神经网络(LSTM)相结合,构建了QPSO-CNN-LSTM组合预测模型。采用QPSO算法对CNN-LSTM模型的隐藏层单元数、学习率、卷积... 针对42CrMo钢精密切削刀具磨损量预测研究小样本、非线性的特点,将量子粒子群算法(QPSO)、卷积神经网络(CNN)及长短期神经网络(LSTM)相结合,构建了QPSO-CNN-LSTM组合预测模型。采用QPSO算法对CNN-LSTM模型的隐藏层单元数、学习率、卷积核等进行优化,结合CNN网络特征提取能力强、LSTM网络具备记忆能力的特点,对实际加工实验的刀具磨损量进行预测,并通过误差评价指标分析,与CNN、LSTM、BP等单一模型以及PSO-GRNN组合模型进行预测效果对比研究。研究结果表明,本文构建的组合预测模型相对于单一预测模型,其预测值与真实值吻合程度更高;相对于PSO-GRNN组合模型,三种误差评价指标的误差值至少降低了27%,其泛化性和稳定性较好,预测精度与非线性拟合能力更强。 展开更多
关键词 刀具磨损量 组合预测模型 量子粒子群算法优化 卷积神经网络 长短期神经网络
在线阅读 下载PDF
基于卷积神经网络的高效量子态层析方法 被引量:1
9
作者 孙乾 蒋楠 《北京师范大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第3期325-330,共6页
通过系统梳理多种量子态层析技术的重构算法,并结合MATLAB数值模拟,比较并分析了线性重构与回归估计、极大似然估计,以及基于深度神经网络量子态层析方法的重构效果.结果表明:基于卷积神经网络重构算法在1~3量子比特时,能够用较短时间... 通过系统梳理多种量子态层析技术的重构算法,并结合MATLAB数值模拟,比较并分析了线性重构与回归估计、极大似然估计,以及基于深度神经网络量子态层析方法的重构效果.结果表明:基于卷积神经网络重构算法在1~3量子比特时,能够用较短时间均实现>99.5%的保真度;相较于其他经典重构算法,基于卷积神经网络重构算法在算法复杂度及保真度上具有显著优势;又因其对复杂模型具有较好的拟合能力,且辅助解决了估计密度矩阵中出现负本征值的问题,使得重构所得估计密度矩阵全部具有物理意义. 展开更多
关键词 量子态层析 密度矩阵 卷积神经网络 保真度 负本征值
在线阅读 下载PDF
基于深度学习的两分量BEC中量子相变点的识别
10
作者 梅万利 徐军 《原子与分子物理学报》 CAS 北大核心 2024年第2期181-186,共6页
识别物质的相变是物理学研究中一个重要问题.本文采用了一种混淆标签方案的卷积神经网络算法来识别两分量玻色-爱因斯坦凝聚(BEC)中量子相变点,通过计算神经网络输出的准确率,得到W型性能曲线,此性能曲线中间的极大值对应着量子相变的... 识别物质的相变是物理学研究中一个重要问题.本文采用了一种混淆标签方案的卷积神经网络算法来识别两分量玻色-爱因斯坦凝聚(BEC)中量子相变点,通过计算神经网络输出的准确率,得到W型性能曲线,此性能曲线中间的极大值对应着量子相变的临界点.研究结果表明,深度学习得到的量子相变点与解析计算值吻合度较高.此混淆标签方案的深度学习研究方法可以应用到存在两种相的相变体系. 展开更多
关键词 量子相变 BEC 深度学习 卷积神经网络
在线阅读 下载PDF
基于量子卷积神经网络的图像识别新模型 被引量:8
11
作者 范兴奎 刘广哲 +3 位作者 王浩文 马鸿洋 李伟 王淑梅 《电子科技大学学报》 EI CAS CSCD 北大核心 2022年第5期642-650,共9页
为了解决卷积神经网络对内存和时间效率要求越来越高的问题,提出一种面向数字图像分类的新模型,该模型为基于强纠缠参数化线路的量子卷积神经网络。首先对经典图像进行预处理和量子比特编码,提取图像的特征信息,并将其制备为量子态作为... 为了解决卷积神经网络对内存和时间效率要求越来越高的问题,提出一种面向数字图像分类的新模型,该模型为基于强纠缠参数化线路的量子卷积神经网络。首先对经典图像进行预处理和量子比特编码,提取图像的特征信息,并将其制备为量子态作为量子卷积神经网络模型的输入。通过设计模型量子卷积层、量子池化层、量子全连接层结构,高效提炼主要特征信息,最后对模型输出执行Z基测量,根据期望值完成图像分类。实验数据集为MNIST数据,{0,1}分类和{2,7}分类准确率均达到了100%。对比结果表明,采用平均池化下采样的三层网络结构的QCNN模型具有更高的测试精度。 展开更多
关键词 量子计算 图像分类 量子卷积神经网络 参数化量子电路
在线阅读 下载PDF
结合双模多尺度CNN特征及自适应深度KELM的浮选工况识别 被引量:12
12
作者 廖一鹏 张进 +1 位作者 王志刚 王卫星 《光学精密工程》 EI CAS CSCD 北大核心 2020年第8期1785-1798,共14页
针对可见光图像特征驱动的浮选工况识别方法的不足,提出一种基于双模态图像多尺度CNN特征及自适应深度自编码核极限学习机(Kernel Extreme Learning Machine,KELM)的浮选工况识别方法。先对泡沫的可见光、红外图像进行非下采样剪切波多... 针对可见光图像特征驱动的浮选工况识别方法的不足,提出一种基于双模态图像多尺度CNN特征及自适应深度自编码核极限学习机(Kernel Extreme Learning Machine,KELM)的浮选工况识别方法。先对泡沫的可见光、红外图像进行非下采样剪切波多尺度分解,设计双通道CNN网络对双模态多尺度图像进行特征提取及融合,将多个双隐层自编码极限学习机串联成深度学习网络对CNN特征逐层抽象提取,然后通过核极限学习机映射到更高维空间进行决策,最后改进量子细菌觅食算法并应用于深度自编码KELM识别模型参数优化。实验结果表明采用双模多尺度CNN特征较单模多尺度、双模单尺度CNN特征的识别精度提高了2.65%,自适应深度自编码KELM模型具有较好的分类精度和泛化性能,各工况识别的平均准确率达到95.98%,识别精度和稳定性较现有方法有较大提升。 展开更多
关键词 浮选工况识别 双模态图像 卷积神经网络 深度双隐层自编码极限学习机 量子细菌觅食算法
在线阅读 下载PDF
基于双模态卷积神经网络自适应迁移学习的浮选工况识别 被引量:10
13
作者 廖一鹏 杨洁洁 +1 位作者 王志刚 王卫星 《光子学报》 EI CAS CSCD 北大核心 2020年第10期167-178,共12页
为提高小规模训练集下CNN特征驱动的浮选工况识别效果,提出一种基于泡沫红外与可见光图像CNN特征提取及自适应迁移学习的工况识别方法.首先构建基于AlexNet的双模态CNN特征提取及识别模型,并通过RGB-D大规模数据集对模型的结构参数进行... 为提高小规模训练集下CNN特征驱动的浮选工况识别效果,提出一种基于泡沫红外与可见光图像CNN特征提取及自适应迁移学习的工况识别方法.首先构建基于AlexNet的双模态CNN特征提取及识别模型,并通过RGB-D大规模数据集对模型的结构参数进行预训练;其次,用多个串联的双隐层自编码极限学习机代替预训练模型的全连接层,实现对双模态CNN特征的融合及逐层抽象提取,然后通过核极限学习机映射到更高维空间进行决策;最后构建浮选小规模数据集对迁移后的模型进行训练,并改进量子狼群算法用于模型参数优化.实验结果表明:自适应迁移学习能够明显提高小样本数据集下的识别准确度,采用双模态CNN迁移学习较单模态CNN迁移学习的工况识别精度提高了3.06%,各工况的平均识别准确率达到96.83%,识别精度和稳定性较现有方法有较大提升. 展开更多
关键词 机器视觉 浮选工况识别 红外与可见光图像 卷积神经网络 迁移学习 双隐层自编码极限学习机 量子狼群算法
在线阅读 下载PDF
冲击噪声下基于演化长短时记忆神经网络的调制信号识别 被引量:4
14
作者 高洪元 王世豪 +2 位作者 程建华 郭瑞晨 张志伟 《智能系统学报》 CSCD 北大核心 2023年第4期676-687,共12页
为了解决冲击噪声下长短时记忆(long short term memory,LSTM)神经网络调制信号识别方法抗冲击噪声能力弱和超参数难以确定的问题,本文提出了一种演化长短时记忆神经网络的调制识别方法。利用基于短时傅里叶变换的卷积神经网络(convolut... 为了解决冲击噪声下长短时记忆(long short term memory,LSTM)神经网络调制信号识别方法抗冲击噪声能力弱和超参数难以确定的问题,本文提出了一种演化长短时记忆神经网络的调制识别方法。利用基于短时傅里叶变换的卷积神经网络(convolution neural network,CNN)去噪模型对数据集去噪;结合量子计算机制和旗鱼优化器(sailfish optimizer,SFO)设计了量子旗鱼算法(quantum sailfish algorithm,QSFA)去演化LSTM神经网络以获得最优的超参数;使用演化长短时记忆神经网络作为分类器进行自动调制信号识别。仿真结果表明,采用所设计的CNN去噪和演化长短时记忆神经网络模型,识别准确率有了大幅度的提高。量子旗鱼算法演化LSTM神经网络模型降低了传统LSTM神经网络容易陷于局部极小值或者过拟合的概率,当混合信噪比为0 dB,所提方法对11种调制信号的平均识别准确率达到90%以上。 展开更多
关键词 调制信号识别 冲击噪声 卷积神经网络 量子旗鱼优化算法 长短时记忆神经网络 稳定分布 超参数 短时傅里叶变换
在线阅读 下载PDF
基于量子卷积神经网络算法的微小零件识别 被引量:3
15
作者 何瑞 丁泽庆 《食品与机械》 北大核心 2021年第6期120-125,共6页
设计了量子卷积神经网络表示层、隐藏层神经元和输出层神经元模型;采用修正线性激活函数ReLu作为激活函数,并通过训练误差函数优化量子旋转角度和神经连接权值。8种微小零件的仿真试验表明,量子卷积神经网络算法的识别准确率较高,耗时... 设计了量子卷积神经网络表示层、隐藏层神经元和输出层神经元模型;采用修正线性激活函数ReLu作为激活函数,并通过训练误差函数优化量子旋转角度和神经连接权值。8种微小零件的仿真试验表明,量子卷积神经网络算法的识别准确率较高,耗时少且识别效果较好。 展开更多
关键词 量子 卷积神经网络 微小零件 识别
在线阅读 下载PDF
基于QPSO-MC-GCN的柴油机典型故障诊断方法研究 被引量:4
16
作者 廖舒琅 毕凤荣 +3 位作者 田从丰 杨晓 李鑫 汤代杰 《振动与冲击》 EI CSCD 北大核心 2022年第17期268-275,319,共9页
针对现有方法在处理训练样本较少的数据集时易出现过拟合现象的问题,将图卷积神经网络引入柴油机故障诊断领域,并结合量子粒子群优化算法,建立一种基于QPSO-MC-GCN(Quantum Particle Swarm Optimization-Multi-channel-Graph Convolutio... 针对现有方法在处理训练样本较少的数据集时易出现过拟合现象的问题,将图卷积神经网络引入柴油机故障诊断领域,并结合量子粒子群优化算法,建立一种基于QPSO-MC-GCN(Quantum Particle Swarm Optimization-Multi-channel-Graph Convolutional Network)的故障诊断方法。该方法搭建了一种邻接矩阵,将时序振动数据转换为图数据,实现多个测点样本特征的有效融合;利用QPSO对多通道图卷积神经网络(MC-GCN)的关键参数学习率和热核函数宽度进行寻优,以提高模型的泛化能力;在传统图卷积神经网络(GCN)的基础上建立双头权值矩阵以提取更丰富的深层特征,并引入一维最大池化层进一步控制过拟合现象。对实测柴油机振动信号的分析结果表明,该方法针对试验所设定故障类型的诊断准确率优于文中的对比方法,尤其是在低标签比的情况下优势更明显。 展开更多
关键词 图卷积神经网络 量子粒子群 柴油机 故障诊断
在线阅读 下载PDF
基于参数化量子电路的量子卷积神经网络模型及应用 被引量:6
17
作者 郑瑾 高庆 +2 位作者 吕颜轩 董道毅 潘宇 《控制理论与应用》 EI CAS CSCD 北大核心 2021年第11期1772-1784,共13页
量子神经网络结合了量子计算与经典神经网络模型的各自优势,为人工智能领域的未来发展提供了一种全新的思路.本文提出一种基于参数化量子电路的量子卷积神经网络模型,能够针对欧几里得结构数据与非欧几里得结构数据,利用量子系统的计算... 量子神经网络结合了量子计算与经典神经网络模型的各自优势,为人工智能领域的未来发展提供了一种全新的思路.本文提出一种基于参数化量子电路的量子卷积神经网络模型,能够针对欧几里得结构数据与非欧几里得结构数据,利用量子系统的计算优势加速经典机器学习任务.在MNIST数据集上的数值仿真结果表明,该模型具有较强的学习能力和良好的泛化性能. 展开更多
关键词 量子机器学习 量子神经网络 量子卷积神经网络 量子图卷积神经网络
在线阅读 下载PDF
基于量子门组的卷积神经网络设计与实现 被引量:4
18
作者 许兴阳 刘宏志 《计算机工程与应用》 CSCD 北大核心 2018年第20期54-61,共8页
为进一步提高卷积神经网络的训练速度,减少训练成本,建立了量子门组卷积神经网络模型(Quantum Gate Convolutional Neural Network,QGCNN)。为了构建QGCNN网络结构,依据传统CNN结构的特点,给出卷积算术线路(Convolutional Arithmetic Ci... 为进一步提高卷积神经网络的训练速度,减少训练成本,建立了量子门组卷积神经网络模型(Quantum Gate Convolutional Neural Network,QGCNN)。为了构建QGCNN网络结构,依据传统CNN结构的特点,给出卷积算术线路(Convolutional Arithmetic Circuit,ConvAC)的定义。用张量分解来说明ConvAC的权值系数之间的关系,为构建QGCNN提供理论依据。将QGCNN分为输入表示层、隐藏层和输出层,在此基础上实现对数据进行量子编码,利用量子门组完成数据初始化,网络参数更新等操作。将QGCNN应用到数字手写体识别中,实验结果表明,该方法在手写体识别的准确率和收敛速度上有不错的效果。 展开更多
关键词 量子计算 量子神经网络 卷积神经网络 量子门
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部