精确高效的多元负荷短期预测对于综合能源系统的运行控制与调度具有重要意义。为了改善负荷预测效果,提出一种量子加权遗忘门与输入门结合的长短期记忆(Quantum weighted coupled input and forget gate long short-term memory,QWCIFGL...精确高效的多元负荷短期预测对于综合能源系统的运行控制与调度具有重要意义。为了改善负荷预测效果,提出一种量子加权遗忘门与输入门结合的长短期记忆(Quantum weighted coupled input and forget gate long short-term memory,QWCIFGLSTM)神经网络模型。在模型结构方面,将长短期记忆(Long short-term memory,LSTM)神经网络中的遗忘门和输入门结合起来,形成遗忘门与输入门结合长短期记忆(Coupled input and forget gate long short-term memory,CIFGLSTM)神经网络,从而减少了网络参数,优化了网络结构;在模型构成方面,采用量子加权神经元替代传统神经元,构建了QWCIFGLSTM神经网络预测模型。量子加权神经元具有较强的数据处理能力和并行计算能力,可以有效提高负荷预测的精度。通过算例仿真验证,所构建的模型相较于基于反向传播(Back propagation,BP)的神经网络预测模型、传统LSTM神经网络预测模型和遗忘门与输入门结合的长短期记忆神经网络预测模型,具有更好的预测效果。展开更多
为了解决冲击噪声下长短时记忆(long short term memory,LSTM)神经网络调制信号识别方法抗冲击噪声能力弱和超参数难以确定的问题,本文提出了一种演化长短时记忆神经网络的调制识别方法。利用基于短时傅里叶变换的卷积神经网络(convolut...为了解决冲击噪声下长短时记忆(long short term memory,LSTM)神经网络调制信号识别方法抗冲击噪声能力弱和超参数难以确定的问题,本文提出了一种演化长短时记忆神经网络的调制识别方法。利用基于短时傅里叶变换的卷积神经网络(convolution neural network,CNN)去噪模型对数据集去噪;结合量子计算机制和旗鱼优化器(sailfish optimizer,SFO)设计了量子旗鱼算法(quantum sailfish algorithm,QSFA)去演化LSTM神经网络以获得最优的超参数;使用演化长短时记忆神经网络作为分类器进行自动调制信号识别。仿真结果表明,采用所设计的CNN去噪和演化长短时记忆神经网络模型,识别准确率有了大幅度的提高。量子旗鱼算法演化LSTM神经网络模型降低了传统LSTM神经网络容易陷于局部极小值或者过拟合的概率,当混合信噪比为0 dB,所提方法对11种调制信号的平均识别准确率达到90%以上。展开更多
文摘精确高效的多元负荷短期预测对于综合能源系统的运行控制与调度具有重要意义。为了改善负荷预测效果,提出一种量子加权遗忘门与输入门结合的长短期记忆(Quantum weighted coupled input and forget gate long short-term memory,QWCIFGLSTM)神经网络模型。在模型结构方面,将长短期记忆(Long short-term memory,LSTM)神经网络中的遗忘门和输入门结合起来,形成遗忘门与输入门结合长短期记忆(Coupled input and forget gate long short-term memory,CIFGLSTM)神经网络,从而减少了网络参数,优化了网络结构;在模型构成方面,采用量子加权神经元替代传统神经元,构建了QWCIFGLSTM神经网络预测模型。量子加权神经元具有较强的数据处理能力和并行计算能力,可以有效提高负荷预测的精度。通过算例仿真验证,所构建的模型相较于基于反向传播(Back propagation,BP)的神经网络预测模型、传统LSTM神经网络预测模型和遗忘门与输入门结合的长短期记忆神经网络预测模型,具有更好的预测效果。
文摘针对信号相位匹配奇异值分解(SVDSPM)算法中参数联合估计耗时长的问题,提出了免疫记忆量子克隆算法(IMQCA).该优化算法引入模拟退火机制修正量子旋转门函数的旋转角度值,构建记忆单元保留进化历史最佳抗体,并结合克隆算子加速种群收敛.由SVDSPM平面阵算法构造了IMQCA的目标函数,提出了同时估计信号方位角、俯仰角和频率的SVDSPM联合估计算法.仿真结果表明,IMQCA算法的方位估计精度与传统的SVDSPM算法相当,但计算耗时仅约为后者的10%,且低信噪比下的性能优于MUSIC方法.在-10 dB信噪比下,IMQCA所得方位角、俯仰角和频率的标准差分别比标准遗传算法小6.659°、9.645°和28.634 Hz,比量子免疫克隆算法小0.789°、1.075°和0.864 Hz.
基金supported by the National Fundamental Research Program of China (Grant No. 2 011CBA00200)the National Natural Science Foundation of China (Grant Nos. 11174271, 61275115, 61435011, 61525504)
文摘为了解决冲击噪声下长短时记忆(long short term memory,LSTM)神经网络调制信号识别方法抗冲击噪声能力弱和超参数难以确定的问题,本文提出了一种演化长短时记忆神经网络的调制识别方法。利用基于短时傅里叶变换的卷积神经网络(convolution neural network,CNN)去噪模型对数据集去噪;结合量子计算机制和旗鱼优化器(sailfish optimizer,SFO)设计了量子旗鱼算法(quantum sailfish algorithm,QSFA)去演化LSTM神经网络以获得最优的超参数;使用演化长短时记忆神经网络作为分类器进行自动调制信号识别。仿真结果表明,采用所设计的CNN去噪和演化长短时记忆神经网络模型,识别准确率有了大幅度的提高。量子旗鱼算法演化LSTM神经网络模型降低了传统LSTM神经网络容易陷于局部极小值或者过拟合的概率,当混合信噪比为0 dB,所提方法对11种调制信号的平均识别准确率达到90%以上。