A brief account of basic connotation and evaluation indexes system of harmonious leadership teams is given. On this basis, a simulation model is built by using the ARENA simulation software and the quantified simulati...A brief account of basic connotation and evaluation indexes system of harmonious leadership teams is given. On this basis, a simulation model is built by using the ARENA simulation software and the quantified simulation is carried out for the factors of harmonization of aerospace enterprise leadership teams. Moreover, by taking the characteristics of aerospace enterprise leadership teams into consideration, the comparison of harmonization quantified results of several typical leadership teams, especially on the comparative analysis of influencing degrees of moral characters and capabilities on the leadership teams overall harmonization is emphatically discussed. Finally, a conclusion is drawn.展开更多
A new parallel architecture for quantified boolean formula(QBF)solving was proposed,and the prediction model based on machine learning technology was proposed for how sharing knowledge affects the solving performance ...A new parallel architecture for quantified boolean formula(QBF)solving was proposed,and the prediction model based on machine learning technology was proposed for how sharing knowledge affects the solving performance in QBF parallel solving system,and the experimental evaluation scheme was also designed.It shows that the characterization factor of clause and cube influence the solving performance markedly in our experiment.At the same time,the heuristic machine learning algorithm was applied,support vector machine was chosen to predict the performance of QBF parallel solving system based on clause sharing and cube sharing.The relative error of accuracy for prediction can be controlled in a reasonable range of 20%30%.The results show the important and complex role that knowledge sharing plays in any modern parallel solver.It shows that the parallel solver with machine learning reduces the quantity of knowledge sharing about 30%and saving computational resource but does not reduce the performance of solving system.展开更多
Efficient tool condition monitoring techniques help to realize intelligent management of tool life and reduce tool usage costs.In this paper,the influence of different wear degrees of ball-end milling cutters on the t...Efficient tool condition monitoring techniques help to realize intelligent management of tool life and reduce tool usage costs.In this paper,the influence of different wear degrees of ball-end milling cutters on the texture shape of machining tool marks is investigated,and a method is proposed for predicting the wear state(including the position and degree of tool wear)of ball-end milling cutters based on entropy measurement of tool mark texture images.Firstly,data samples are prepared through wear experiments,and the change law of the tool mark texture shape with the tool wear state is analyzed.Then,a two-dimensional sample entropy algorithm is developed to quantify the texture morphology.Finally,the processing parameters and tool attitude are integrated into the prediction process to predict the wear value and wear position of the ball end milling cutter.After testing,the correlation between the predicted value and the standard value of the proposed tool condition monitoring method reaches 95.32%,and the accuracy reaches 82.73%,indicating that the proposed method meets the requirement of tool condition monitoring.展开更多
Genetically encoded biosensors based on fluorescence resonance energy transfer(FRET)have been widely applied to visualize the molecular activity in live cells with high spatiotemporal resolution.The enormous amount of...Genetically encoded biosensors based on fluorescence resonance energy transfer(FRET)have been widely applied to visualize the molecular activity in live cells with high spatiotemporal resolution.The enormous amount of video images and the complex dynamics of signaling events present tremendous challenges for data analysis and demand the development of intelligent and automated imaging analysis methods specifically envisioned for the studies of live cell imaging.We have developed a general correlative FRET imaging method(CFIM)to quantify the subcellular coupling between an enzymatic activity and a phenotypic response in live cells,e.g.at focal adhesions(FAs).CFIM quantitatively evaluated the cause-effect relation-展开更多
Forced dissociation of selectin-ligand complex is crucial to such biological processes as leukocyte recruitment,thrombosis formation,as well as tumor metastasis<sup>[</sup>1].Although several assays and te...Forced dissociation of selectin-ligand complex is crucial to such biological processes as leukocyte recruitment,thrombosis formation,as well as tumor metastasis<sup>[</sup>1].Although several assays and techniques,e.g.,dynamic force spectroscopy(DFS),have been applied to probe the complex at single-bond level,the discrepancies in the loading rate dependence of bond rupture force were found in the assays,presumably due to the different pathways in energy landscape and binding kinetics of molecular complexes<sup>[2]</sup>.However,the underlying mechanisms remain unclear.Here an optical trap(OT)assay was used to quantify the bond rupture at r<sub>f</sub>≤20 pN/s展开更多
文摘A brief account of basic connotation and evaluation indexes system of harmonious leadership teams is given. On this basis, a simulation model is built by using the ARENA simulation software and the quantified simulation is carried out for the factors of harmonization of aerospace enterprise leadership teams. Moreover, by taking the characteristics of aerospace enterprise leadership teams into consideration, the comparison of harmonization quantified results of several typical leadership teams, especially on the comparative analysis of influencing degrees of moral characters and capabilities on the leadership teams overall harmonization is emphatically discussed. Finally, a conclusion is drawn.
基金Project(61171141)supported by the National Natural Science Foundation of China
文摘A new parallel architecture for quantified boolean formula(QBF)solving was proposed,and the prediction model based on machine learning technology was proposed for how sharing knowledge affects the solving performance in QBF parallel solving system,and the experimental evaluation scheme was also designed.It shows that the characterization factor of clause and cube influence the solving performance markedly in our experiment.At the same time,the heuristic machine learning algorithm was applied,support vector machine was chosen to predict the performance of QBF parallel solving system based on clause sharing and cube sharing.The relative error of accuracy for prediction can be controlled in a reasonable range of 20%30%.The results show the important and complex role that knowledge sharing plays in any modern parallel solver.It shows that the parallel solver with machine learning reduces the quantity of knowledge sharing about 30%and saving computational resource but does not reduce the performance of solving system.
基金Project(51975169)supported by the National Natural Science Foundation of ChinaProject(LH2022E085)supported by the Natural Science Foundation of Heilongjiang Province,China。
文摘Efficient tool condition monitoring techniques help to realize intelligent management of tool life and reduce tool usage costs.In this paper,the influence of different wear degrees of ball-end milling cutters on the texture shape of machining tool marks is investigated,and a method is proposed for predicting the wear state(including the position and degree of tool wear)of ball-end milling cutters based on entropy measurement of tool mark texture images.Firstly,data samples are prepared through wear experiments,and the change law of the tool mark texture shape with the tool wear state is analyzed.Then,a two-dimensional sample entropy algorithm is developed to quantify the texture morphology.Finally,the processing parameters and tool attitude are integrated into the prediction process to predict the wear value and wear position of the ball end milling cutter.After testing,the correlation between the predicted value and the standard value of the proposed tool condition monitoring method reaches 95.32%,and the accuracy reaches 82.73%,indicating that the proposed method meets the requirement of tool condition monitoring.
文摘Genetically encoded biosensors based on fluorescence resonance energy transfer(FRET)have been widely applied to visualize the molecular activity in live cells with high spatiotemporal resolution.The enormous amount of video images and the complex dynamics of signaling events present tremendous challenges for data analysis and demand the development of intelligent and automated imaging analysis methods specifically envisioned for the studies of live cell imaging.We have developed a general correlative FRET imaging method(CFIM)to quantify the subcellular coupling between an enzymatic activity and a phenotypic response in live cells,e.g.at focal adhesions(FAs).CFIM quantitatively evaluated the cause-effect relation-
基金supported by National Natural Science Foundation of China grants 10902117, 31230027,30730032,and 10332060
文摘Forced dissociation of selectin-ligand complex is crucial to such biological processes as leukocyte recruitment,thrombosis formation,as well as tumor metastasis<sup>[</sup>1].Although several assays and techniques,e.g.,dynamic force spectroscopy(DFS),have been applied to probe the complex at single-bond level,the discrepancies in the loading rate dependence of bond rupture force were found in the assays,presumably due to the different pathways in energy landscape and binding kinetics of molecular complexes<sup>[2]</sup>.However,the underlying mechanisms remain unclear.Here an optical trap(OT)assay was used to quantify the bond rupture at r<sub>f</sub>≤20 pN/s