对具有NP完全难度的网络状态动态变化下的路由问题,提出了一种基于蚁群网络(A n tnet)的蚁群优化分布式Q oS路由算法.算法的主要特点是:(1)采用了动态更新的概率表替代传统的路由表;(2)采用了智能的初始化方法;(3)采用了一种新颖的信息...对具有NP完全难度的网络状态动态变化下的路由问题,提出了一种基于蚁群网络(A n tnet)的蚁群优化分布式Q oS路由算法.算法的主要特点是:(1)采用了动态更新的概率表替代传统的路由表;(2)采用了智能的初始化方法;(3)采用了一种新颖的信息素更新机制;(4)采用一种新的节点选择机制;(5)引入蚂蚁相遇机制.与标准的A n tN et相比,该算法具有更快的收敛速度和较好的吞吐能力.另外,算法同时考虑了满足Q oS度量和负载平衡等问题.展开更多
为了解决无线传感器网络Qo S(Quality of Service,Qo S)路由在寻找最优路径时要满足时延、抖动、能量等多个约束条件的问题,提出一种新的自适应蚁群优化算法,该算法有两方面的自适应策略。将信息素挥发因子ρ设置为动态自适应,在自适应...为了解决无线传感器网络Qo S(Quality of Service,Qo S)路由在寻找最优路径时要满足时延、抖动、能量等多个约束条件的问题,提出一种新的自适应蚁群优化算法,该算法有两方面的自适应策略。将信息素挥发因子ρ设置为动态自适应,在自适应因子μ作用下动态变化,增强算法的寻优能力,避免算法陷入局部最优;以多约束为条件建立加权的适应度函数,通过适应度函数值与自适应因子μ共同影响路径上的信息素更新,增强算法的收敛速度。通过仿真实验表明,该算法在满足多约束条件方面具有良好的效果。展开更多
文摘对具有NP完全难度的网络状态动态变化下的路由问题,提出了一种基于蚁群网络(A n tnet)的蚁群优化分布式Q oS路由算法.算法的主要特点是:(1)采用了动态更新的概率表替代传统的路由表;(2)采用了智能的初始化方法;(3)采用了一种新颖的信息素更新机制;(4)采用一种新的节点选择机制;(5)引入蚂蚁相遇机制.与标准的A n tN et相比,该算法具有更快的收敛速度和较好的吞吐能力.另外,算法同时考虑了满足Q oS度量和负载平衡等问题.
文摘为了解决无线传感器网络Qo S(Quality of Service,Qo S)路由在寻找最优路径时要满足时延、抖动、能量等多个约束条件的问题,提出一种新的自适应蚁群优化算法,该算法有两方面的自适应策略。将信息素挥发因子ρ设置为动态自适应,在自适应因子μ作用下动态变化,增强算法的寻优能力,避免算法陷入局部最优;以多约束为条件建立加权的适应度函数,通过适应度函数值与自适应因子μ共同影响路径上的信息素更新,增强算法的收敛速度。通过仿真实验表明,该算法在满足多约束条件方面具有良好的效果。