A quadratic bilevel programming problem is transformed into a single level complementarity slackness problem by applying Karush-Kuhn-Tucker(KKT) conditions.To cope with the complementarity constraints,a binary encod...A quadratic bilevel programming problem is transformed into a single level complementarity slackness problem by applying Karush-Kuhn-Tucker(KKT) conditions.To cope with the complementarity constraints,a binary encoding scheme is adopted for KKT multipliers,and then the complementarity slackness problem is simplified to successive quadratic programming problems,which can be solved by many algorithms available.Based on 0-1 binary encoding,an orthogonal genetic algorithm,in which the orthogonal experimental design with both two-level orthogonal array and factor analysis is used as crossover operator,is proposed.Numerical experiments on 10 benchmark examples show that the orthogonal genetic algorithm can find global optimal solutions of quadratic bilevel programming problems with high accuracy in a small number of iterations.展开更多
The distributed hybrid processing optimization problem of non-cooperative targets is an important research direction for future networked air-defense and anti-missile firepower systems. In this paper, the air-defense ...The distributed hybrid processing optimization problem of non-cooperative targets is an important research direction for future networked air-defense and anti-missile firepower systems. In this paper, the air-defense anti-missile targets defense problem is abstracted as a nonconvex constrained combinatorial optimization problem with the optimization objective of maximizing the degree of contribution of the processing scheme to non-cooperative targets, and the constraints mainly consider geographical conditions and anti-missile equipment resources. The grid discretization concept is used to partition the defense area into network nodes, and the overall defense strategy scheme is described as a nonlinear programming problem to solve the minimum defense cost within the maximum defense capability of the defense system network. In the solution of the minimum defense cost problem, the processing scheme, equipment coverage capability, constraints and node cost requirements are characterized, then a nonlinear mathematical model of the non-cooperative target distributed hybrid processing optimization problem is established, and a local optimal solution based on the sequential quadratic programming algorithm is constructed, and the optimal firepower processing scheme is given by using the sequential quadratic programming method containing non-convex quadratic equations and inequality constraints. Finally, the effectiveness of the proposed method is verified by simulation examples.展开更多
Based on the semidefinite programming relaxation of the CDMA maximum likelihood multiuser detection problem, a detection strategy by the successive quadratic programming algorithm is presented. Coupled with the random...Based on the semidefinite programming relaxation of the CDMA maximum likelihood multiuser detection problem, a detection strategy by the successive quadratic programming algorithm is presented. Coupled with the randomized cut generation scheme, the suboptimal solution of the multiuser detection problem in obtained. Compared to the interior point methods previously reported based on semidefmite programming, simulations demonstrate that the successive quadratic programming algorithm often yields the similar BER performances of the multiuser detection problem. But the average CPU time of this approach is significantly reduced.展开更多
In order to slove the large-scale nonlinear programming (NLP) problems efficiently, an efficient optimization algorithm based on reduced sequential quadratic programming (rSQP) and automatic differentiation (AD)...In order to slove the large-scale nonlinear programming (NLP) problems efficiently, an efficient optimization algorithm based on reduced sequential quadratic programming (rSQP) and automatic differentiation (AD) is presented in this paper. With the characteristics of sparseness, relatively low degrees of freedom and equality constraints utilized, the nonlinear programming problem is solved by improved rSQP solver. In the solving process, AD technology is used to obtain accurate gradient information. The numerical results show that the combined algorithm, which is suitable for large-scale process optimization problems, can calculate more efficiently than rSQP itself.展开更多
随着新能源发电比例越来越高,其受电网三相不平衡的影响越来越明显,尤其负序超标是导致电力系统安全性降低的重要原因。统一潮流控制器(unified power flow controller,UPFC)具有调节各序电流输出的能力,可用于提升系统的平衡性。为此,...随着新能源发电比例越来越高,其受电网三相不平衡的影响越来越明显,尤其负序超标是导致电力系统安全性降低的重要原因。统一潮流控制器(unified power flow controller,UPFC)具有调节各序电流输出的能力,可用于提升系统的平衡性。为此,首先建立基于解耦-补偿原理的UPFC正序最优补偿潮流算法;其次构建UPFC的负序补偿电流控制模型,将电压不平衡补偿的优化求解问题归结为凸二次约束二次规划(quadratically constrained quadratic programming,QCQP)问题,并采用原-对偶内点法求取UPFC的负序电流最优输出值;最后提出计及正序网损与负序电压指标的负序电压补偿最优潮流(optimal power flow,OPF)计算方法以及区域负序电压总体补偿策略。通过算例分析验证所提出方法的可行性与有效性。展开更多
水泥熟料游离氧化钙(f Ca O)含量是水泥生产过程的重要质量指标。针对难以建立其精确的数学模型和难以实时在线测量的问题,首先采用序列二次规划方法增强量子粒子群算法的局部搜索能力,提出了一种局部区域可调的改进量子粒子群优化(IQP...水泥熟料游离氧化钙(f Ca O)含量是水泥生产过程的重要质量指标。针对难以建立其精确的数学模型和难以实时在线测量的问题,首先采用序列二次规划方法增强量子粒子群算法的局部搜索能力,提出了一种局部区域可调的改进量子粒子群优化(IQPSO)算法,并采用提出的IQPSO算法优化超限学习机(ELM)的输入层权值和隐层阈值参数,在优化过程中同时兼顾均方根误差和隐层输出矩阵条件数最小的原则,建立了基于IQPSO优化ELM的水泥熟料f Ca O软测量模型,仿真验证结果表明,IQPSO算法具有较高的搜索精度以及较快的收敛速度,建立的软测量模型精度高、泛化能力强。最后基于该模型,通过软件编程的方法给出了水泥熟料质量指标软测量仪表,实现了f Ca O含量的在线软测量。展开更多
基金supported by the National Natural Science Foundation of China (60873099)
文摘A quadratic bilevel programming problem is transformed into a single level complementarity slackness problem by applying Karush-Kuhn-Tucker(KKT) conditions.To cope with the complementarity constraints,a binary encoding scheme is adopted for KKT multipliers,and then the complementarity slackness problem is simplified to successive quadratic programming problems,which can be solved by many algorithms available.Based on 0-1 binary encoding,an orthogonal genetic algorithm,in which the orthogonal experimental design with both two-level orthogonal array and factor analysis is used as crossover operator,is proposed.Numerical experiments on 10 benchmark examples show that the orthogonal genetic algorithm can find global optimal solutions of quadratic bilevel programming problems with high accuracy in a small number of iterations.
基金supported by the National Natural Science Foundation of China (61903025)the Fundamental Research Funds for the Cent ral Universities (FRF-IDRY-20-013)。
文摘The distributed hybrid processing optimization problem of non-cooperative targets is an important research direction for future networked air-defense and anti-missile firepower systems. In this paper, the air-defense anti-missile targets defense problem is abstracted as a nonconvex constrained combinatorial optimization problem with the optimization objective of maximizing the degree of contribution of the processing scheme to non-cooperative targets, and the constraints mainly consider geographical conditions and anti-missile equipment resources. The grid discretization concept is used to partition the defense area into network nodes, and the overall defense strategy scheme is described as a nonlinear programming problem to solve the minimum defense cost within the maximum defense capability of the defense system network. In the solution of the minimum defense cost problem, the processing scheme, equipment coverage capability, constraints and node cost requirements are characterized, then a nonlinear mathematical model of the non-cooperative target distributed hybrid processing optimization problem is established, and a local optimal solution based on the sequential quadratic programming algorithm is constructed, and the optimal firepower processing scheme is given by using the sequential quadratic programming method containing non-convex quadratic equations and inequality constraints. Finally, the effectiveness of the proposed method is verified by simulation examples.
文摘Based on the semidefinite programming relaxation of the CDMA maximum likelihood multiuser detection problem, a detection strategy by the successive quadratic programming algorithm is presented. Coupled with the randomized cut generation scheme, the suboptimal solution of the multiuser detection problem in obtained. Compared to the interior point methods previously reported based on semidefmite programming, simulations demonstrate that the successive quadratic programming algorithm often yields the similar BER performances of the multiuser detection problem. But the average CPU time of this approach is significantly reduced.
文摘In order to slove the large-scale nonlinear programming (NLP) problems efficiently, an efficient optimization algorithm based on reduced sequential quadratic programming (rSQP) and automatic differentiation (AD) is presented in this paper. With the characteristics of sparseness, relatively low degrees of freedom and equality constraints utilized, the nonlinear programming problem is solved by improved rSQP solver. In the solving process, AD technology is used to obtain accurate gradient information. The numerical results show that the combined algorithm, which is suitable for large-scale process optimization problems, can calculate more efficiently than rSQP itself.
文摘随着新能源发电比例越来越高,其受电网三相不平衡的影响越来越明显,尤其负序超标是导致电力系统安全性降低的重要原因。统一潮流控制器(unified power flow controller,UPFC)具有调节各序电流输出的能力,可用于提升系统的平衡性。为此,首先建立基于解耦-补偿原理的UPFC正序最优补偿潮流算法;其次构建UPFC的负序补偿电流控制模型,将电压不平衡补偿的优化求解问题归结为凸二次约束二次规划(quadratically constrained quadratic programming,QCQP)问题,并采用原-对偶内点法求取UPFC的负序电流最优输出值;最后提出计及正序网损与负序电压指标的负序电压补偿最优潮流(optimal power flow,OPF)计算方法以及区域负序电压总体补偿策略。通过算例分析验证所提出方法的可行性与有效性。
文摘水泥熟料游离氧化钙(f Ca O)含量是水泥生产过程的重要质量指标。针对难以建立其精确的数学模型和难以实时在线测量的问题,首先采用序列二次规划方法增强量子粒子群算法的局部搜索能力,提出了一种局部区域可调的改进量子粒子群优化(IQPSO)算法,并采用提出的IQPSO算法优化超限学习机(ELM)的输入层权值和隐层阈值参数,在优化过程中同时兼顾均方根误差和隐层输出矩阵条件数最小的原则,建立了基于IQPSO优化ELM的水泥熟料f Ca O软测量模型,仿真验证结果表明,IQPSO算法具有较高的搜索精度以及较快的收敛速度,建立的软测量模型精度高、泛化能力强。最后基于该模型,通过软件编程的方法给出了水泥熟料质量指标软测量仪表,实现了f Ca O含量的在线软测量。