This article presents a polynomial predictor-corrector interior-point algorithm for convex quadratic programming based on a modified predictor-corrector interior-point algorithm. In this algorithm, there is only one c...This article presents a polynomial predictor-corrector interior-point algorithm for convex quadratic programming based on a modified predictor-corrector interior-point algorithm. In this algorithm, there is only one corrector step after each predictor step, where Step 2 is a predictor step and Step 4 is a corrector step in the algorithm. In the algorithm, the predictor step decreases the dual gap as much as possible in a wider neighborhood of the central path and the corrector step draws iteration points back to a narrower neighborhood and make a reduction for the dual gap. It is shown that the algorithm has O(√nL) iteration complexity which is the best result for convex quadratic programming so far.展开更多
With the idea of maximum entropy function and penalty function methods, we transform the quadratic programming problem into an unconstrained differentiable optimization problem, discuss the interval extension of the m...With the idea of maximum entropy function and penalty function methods, we transform the quadratic programming problem into an unconstrained differentiable optimization problem, discuss the interval extension of the maximum entropy function, provide the region deletion test rules and design an interval maximum entropy algorithm for quadratic programming problem. The convergence of the method is proved and numerical results are presented. Both theoretical and numerical results show that the method is reliable and efficient.展开更多
In this paper, we consider the socalled k-coloring problem in general case.Firstly, a special quadratic 0-1 programming is constructed to formulate k-coloring problem. Secondly, by use of the equivalence between above...In this paper, we consider the socalled k-coloring problem in general case.Firstly, a special quadratic 0-1 programming is constructed to formulate k-coloring problem. Secondly, by use of the equivalence between above quadratic0-1 programming and its relaxed problem, k-coloring problem is converted intoa class of (continuous) nonconvex quadratic programs, and several theoreticresults are also introduced. Thirdly, linear programming approximate algorithmis quoted and verified for this class of nonconvex quadratic programs. Finally,examining problems which are used to test the algorithm are constructed andsufficient computation experiments are reported.展开更多
基金Project supported by the National Science Foundation of China (60574071) the Foundation for University Key Teacher by the Ministry of Education.
文摘This article presents a polynomial predictor-corrector interior-point algorithm for convex quadratic programming based on a modified predictor-corrector interior-point algorithm. In this algorithm, there is only one corrector step after each predictor step, where Step 2 is a predictor step and Step 4 is a corrector step in the algorithm. In the algorithm, the predictor step decreases the dual gap as much as possible in a wider neighborhood of the central path and the corrector step draws iteration points back to a narrower neighborhood and make a reduction for the dual gap. It is shown that the algorithm has O(√nL) iteration complexity which is the best result for convex quadratic programming so far.
基金Supported by Science and Technology Foundation of China University of Mining & Technology
文摘With the idea of maximum entropy function and penalty function methods, we transform the quadratic programming problem into an unconstrained differentiable optimization problem, discuss the interval extension of the maximum entropy function, provide the region deletion test rules and design an interval maximum entropy algorithm for quadratic programming problem. The convergence of the method is proved and numerical results are presented. Both theoretical and numerical results show that the method is reliable and efficient.
文摘In this paper, we consider the socalled k-coloring problem in general case.Firstly, a special quadratic 0-1 programming is constructed to formulate k-coloring problem. Secondly, by use of the equivalence between above quadratic0-1 programming and its relaxed problem, k-coloring problem is converted intoa class of (continuous) nonconvex quadratic programs, and several theoreticresults are also introduced. Thirdly, linear programming approximate algorithmis quoted and verified for this class of nonconvex quadratic programs. Finally,examining problems which are used to test the algorithm are constructed andsufficient computation experiments are reported.