Coal pyrolysis integrated with dry reforming of low-carbon alkane(CP-DRA)is an effective way to improve tar yield.Ni/La_(2)O_(3)-ZrO_(2) with a La/Zr ratio of 4 was a good catalyst for DRA to inhibit carbon deposition...Coal pyrolysis integrated with dry reforming of low-carbon alkane(CP-DRA)is an effective way to improve tar yield.Ni/La_(2)O_(3)-ZrO_(2) with a La/Zr ratio of 4 was a good catalyst for DRA to inhibit carbon deposition and obtain high tar yield in CP-DRA.In this study,the fraction distribution and component of tars from CP-DRA and coal pyrolysis in N_(2) atmosphere(CP-N_(2))were characterized by using several methods to understand the effect of DRA on coal pyrolysis.The isotope trace method was also used to discuss the role of low-carbon alkane in CP-DRA.The results showed that the tar from CP-N_(2)is mainly composed of aliphatic compounds with more C_(al),H_(al) and CH+CH_(2),and the tar from CP-DRA contains more Car,Har,and CH_(3),and has lower weight-average molecular weight and more light tar content than CP-N_(2).A small amount of C_(2)H_(6) addition in CP-DRA will raise the ratio of H_(β) and CH+CH_(2).Electron paramagnetic resonance(EPR)analysis shows that the tar from CP-DRA has a higher radical concentration while the corresponding char has a lower radical concentration.The isotope trace experiment showed that alkanes provide·H,·CH_(3),etc.to stabilize the radicals from coal pyrolysis and result in more alkyl aromatic compounds during CP-DRA.展开更多
In order to increase the understanding of the pyrolysis mechanism, Fourier transform infrared spectroscopy (FT-IR) and thermogravimetry-mass spectrometric coupling technique (TG-MS) were used to study the pyrolysis be...In order to increase the understanding of the pyrolysis mechanism, Fourier transform infrared spectroscopy (FT-IR) and thermogravimetry-mass spectrometric coupling technique (TG-MS) were used to study the pyrolysis behavior of furfural-acetone resin used for new carbon materials. The curing and carbonization mechanisms of furfural-acetone resin were mainly investigated; structural changes and volatile products evolved during pyrolysis were analyzed. The results indicate that, during pyrolysis of furfural-acetone resin adding 7% (mass fraction) phosphorous acid as curing agent, the rupture of C—O bond in the five-membered heterocycle firstly takes place to release oxygen atoms and then does the C—H bond, which enable the molecular chain to cross-link and condense, then lead to the formation of three dimensional networking structure. With the increase of pyrolyzing temperature, the scission of methyl and the opening of furan ring are generated. As a result, the recomposition of molecular chain structure is generated and a hexatomic fused ring containing double bonds is built. The main volatile products during pyrolysis of furfural- acetone resin are H2O, and a small mount of CO, CO2 and CH4. At elevated temperatures, dehydrogenation takes place and hydrogen gas is evolved.展开更多
基金supported by the National Natural Science Foundation of China(21576046)the Innovation Team Support Program in Key Areas of the Dalian Science and Technology Bureau(2019RT10).
文摘Coal pyrolysis integrated with dry reforming of low-carbon alkane(CP-DRA)is an effective way to improve tar yield.Ni/La_(2)O_(3)-ZrO_(2) with a La/Zr ratio of 4 was a good catalyst for DRA to inhibit carbon deposition and obtain high tar yield in CP-DRA.In this study,the fraction distribution and component of tars from CP-DRA and coal pyrolysis in N_(2) atmosphere(CP-N_(2))were characterized by using several methods to understand the effect of DRA on coal pyrolysis.The isotope trace method was also used to discuss the role of low-carbon alkane in CP-DRA.The results showed that the tar from CP-N_(2)is mainly composed of aliphatic compounds with more C_(al),H_(al) and CH+CH_(2),and the tar from CP-DRA contains more Car,Har,and CH_(3),and has lower weight-average molecular weight and more light tar content than CP-N_(2).A small amount of C_(2)H_(6) addition in CP-DRA will raise the ratio of H_(β) and CH+CH_(2).Electron paramagnetic resonance(EPR)analysis shows that the tar from CP-DRA has a higher radical concentration while the corresponding char has a lower radical concentration.The isotope trace experiment showed that alkanes provide·H,·CH_(3),etc.to stabilize the radicals from coal pyrolysis and result in more alkyl aromatic compounds during CP-DRA.
基金Project(2006CB600902) supported by the Major State Basic Research and Development Program of China
文摘In order to increase the understanding of the pyrolysis mechanism, Fourier transform infrared spectroscopy (FT-IR) and thermogravimetry-mass spectrometric coupling technique (TG-MS) were used to study the pyrolysis behavior of furfural-acetone resin used for new carbon materials. The curing and carbonization mechanisms of furfural-acetone resin were mainly investigated; structural changes and volatile products evolved during pyrolysis were analyzed. The results indicate that, during pyrolysis of furfural-acetone resin adding 7% (mass fraction) phosphorous acid as curing agent, the rupture of C—O bond in the five-membered heterocycle firstly takes place to release oxygen atoms and then does the C—H bond, which enable the molecular chain to cross-link and condense, then lead to the formation of three dimensional networking structure. With the increase of pyrolyzing temperature, the scission of methyl and the opening of furan ring are generated. As a result, the recomposition of molecular chain structure is generated and a hexatomic fused ring containing double bonds is built. The main volatile products during pyrolysis of furfural- acetone resin are H2O, and a small mount of CO, CO2 and CH4. At elevated temperatures, dehydrogenation takes place and hydrogen gas is evolved.