Functionalized implants demonstrate an upgraded approach in orthopedic implants,aiming to achieve long term success through improved bio integration.Bioceramic coatings with multifunctionality have arisen as an effect...Functionalized implants demonstrate an upgraded approach in orthopedic implants,aiming to achieve long term success through improved bio integration.Bioceramic coatings with multifunctionality have arisen as an effective substitute for conventional coatings,owing to their combination of various properties that are essential for bio-implants,such as osteointegration and antibacterial character.In the present study,thin hopeite coatings were produced by Pulsed laser deposition(PLD)and radio frequency magnetron sputtering(RFMS)on Ti64 substrates.The obtained hopeite coatings were annealed at 500°C in ambient air and studied in terms of surface morphology,phase composition,surface roughness,adhesion strength,antibacterial efficacy,apatite forming ability,and surface wettability by scanning electron microscope(SEM),X-ray diffraction(XRD),atomic force microscope(AFM),tensometer,fluorescence-activated cell sorting(FACS),simulated body fluid(SBF)immersion test and contact angle goniometer,respectively.Furthermore,based on promising results obtained in the present work it can be summarized that the new generation multifunctional hopeite coating synthesized by two alternative new process routes of PLD and RFMS on Ti64 substrates,provides effective alternatives to conventional coatings,largely attributed to strong osteointegration and antibacterial character of deposited hopeite coating ensuring the overall stability of metallic orthopedic implants.展开更多
Thin films of PrCoO3 were deposited on LaAlO3 substrates by pulsed laser deposition technique.X-ray diffraction result indicates that films are single phase and c-axis textured.To investigate the spin state transition...Thin films of PrCoO3 were deposited on LaAlO3 substrates by pulsed laser deposition technique.X-ray diffraction result indicates that films are single phase and c-axis textured.To investigate the spin state transition,Raman spectroscopy measurements were performed at different temperatures.The position of the Raman modes is found to increase while full width at half maximum(FWHM) of these modes is found to decrease with the decrease of temperature across spin state transition temperature(220 K) of PrCoO3.展开更多
High-energy continuous wave(CW)lasers are mostly used in laser damage applications,but efficient laser ablation of transparent materials is challenging due to low optical absorption.Considering the potential of femtos...High-energy continuous wave(CW)lasers are mostly used in laser damage applications,but efficient laser ablation of transparent materials is challenging due to low optical absorption.Considering the potential of femtosecond(fs)laser-induced air filament for high-peak laser transmission over long distances,femtosecond(fs)laser-induced air filaments are combined with a millisecond(ms)laser to form an fs-ms CPL,enhancing the efficiency of sapphire ablation through synchronized spatial-temporal focusing.Experimental results show that ablation efficiency increases with the ms peak power and duty ratio.Excessive thermal stress leads to fragmentation of the sapphire when the ms duty ratio is over 30%at the peak power of 800 W,or when the peak power is over 500 W at a duty ratio of 100%.Also,the mechanism of high-efficiency damage is revealed through in-situ high-speed imaging.According to it,the ablation process went through 4 stages within 1.5 ms:defect-creating,melting and ablation,spattering,and fragmentation.Finally,the equivalent ablation efficiency of the fs-ms CPL is as high as 1.73×10^(7)μm^(3)/J,about 28 times higher compared to the fs laser only.The CPL damage method explored in this paper can provide theoretical guidance for efficient laser damage of transparent materials.展开更多
Femtosecond pulsed lasers have been widely used over the past decades due to their capability to fabricate precise patterns at the micro-and nano-lengths scales. A key issue for efficient material processing is the de...Femtosecond pulsed lasers have been widely used over the past decades due to their capability to fabricate precise patterns at the micro-and nano-lengths scales. A key issue for efficient material processing is the determination of the laser parameters used in the experimental set ups. Despite a systematic investigation that has been performed to highlight the impact of every parameter independently, little attention has been drawn on the role of the substrate material on which the irradiated solid is placed. In this work, the influence of the substrate is emphasised for films of various thicknesses, which demonstrates that both the optical and thermophysical properties of the substrate affect the thermal fingerprint on the irradiated film while the impact is manifested to be higher at smaller film sizes. Two representative materials, silicon and fused silica, have been selected as typical substrates for thin films(gold and nickel) of different optical and thermophysical behaviour and the thermal response and damage thresholds are evaluated for the irradiated solids. The pronounced influence of the substrate is aimed to pave the way for new and more optimised designs of laserbased fabrication set ups and processing schemes.展开更多
We introduce our state-of-the art of“vacuum consistent electrochemistry”to an investigation of the interfaces between oxides and ionic liquid(IL).Pulsed laser deposition(PLD)has been one of the powerful and sophisti...We introduce our state-of-the art of“vacuum consistent electrochemistry”to an investigation of the interfaces between oxides and ionic liquid(IL).Pulsed laser deposition(PLD)has been one of the powerful and sophisticated techniques to realize nanoscale preparation of high-quality epitaxial oxide thin films.On the other hand,electrochemistry is a simple,very sensitive,and non-destructive analysis technique for solid-liquid interfaces.To ensure the reproducibility in experiment of the interfaces of such epitaxial oxide films,as well as bulk oxide single-crystals,with IL,we employ a home-built PLD-electrochemical(EC)system with IL as an electrolyte.The system allows one to perform all-in-vacuum experiments during the preparation of well-defined oxide electrode surfaces to their electrochemical analyses.The topics include electrochemical evaluations of the oxide’s own properties,such as carrier density and relative permittivity,and the interfacial properties of oxides in contact with IL,such as flat band potential and electric double layer(EDL)capacitance,ending with future perspectives in all-solid-state electrochemistry.展开更多
Electro-Optic Sampling(EOS)detection technique has been widely used in terahertz science and tech⁃nology,and it also can measure the field time waveform of the few-cycle laser pulse.Its frequency response and band lim...Electro-Optic Sampling(EOS)detection technique has been widely used in terahertz science and tech⁃nology,and it also can measure the field time waveform of the few-cycle laser pulse.Its frequency response and band limitation are determined directly by the electro-optic crystal and duration of the probe laser pulse.Here,we investigate the performance of the EOS with thin GaSe crystal in the measurement of the mid-infrared few-cycle la⁃ser pulse.The shift of the central frequency and change of the bandwidth induced by the EOS detection are calcu⁃lated,and then the pulse distortions induced in this detection process are discussed.It is found that this technique produces a red-shift of the central frequency and narrowing of the bandwidth.These changings decrease when the laser wavelength increases from 2μm to 10μm.This work can help to estimate the performance of the EOS de⁃tection technique in the mid-infrared band and offer a reference for the related experiment as well.展开更多
文摘Functionalized implants demonstrate an upgraded approach in orthopedic implants,aiming to achieve long term success through improved bio integration.Bioceramic coatings with multifunctionality have arisen as an effective substitute for conventional coatings,owing to their combination of various properties that are essential for bio-implants,such as osteointegration and antibacterial character.In the present study,thin hopeite coatings were produced by Pulsed laser deposition(PLD)and radio frequency magnetron sputtering(RFMS)on Ti64 substrates.The obtained hopeite coatings were annealed at 500°C in ambient air and studied in terms of surface morphology,phase composition,surface roughness,adhesion strength,antibacterial efficacy,apatite forming ability,and surface wettability by scanning electron microscope(SEM),X-ray diffraction(XRD),atomic force microscope(AFM),tensometer,fluorescence-activated cell sorting(FACS),simulated body fluid(SBF)immersion test and contact angle goniometer,respectively.Furthermore,based on promising results obtained in the present work it can be summarized that the new generation multifunctional hopeite coating synthesized by two alternative new process routes of PLD and RFMS on Ti64 substrates,provides effective alternatives to conventional coatings,largely attributed to strong osteointegration and antibacterial character of deposited hopeite coating ensuring the overall stability of metallic orthopedic implants.
基金Project supported by the Second Stage of Brain Korea 21 Project
文摘Thin films of PrCoO3 were deposited on LaAlO3 substrates by pulsed laser deposition technique.X-ray diffraction result indicates that films are single phase and c-axis textured.To investigate the spin state transition,Raman spectroscopy measurements were performed at different temperatures.The position of the Raman modes is found to increase while full width at half maximum(FWHM) of these modes is found to decrease with the decrease of temperature across spin state transition temperature(220 K) of PrCoO3.
基金Project(52105498) supported by the National Natural Science Foundation of ChinaProject(2021RC3074) supported by the Science and Technology Innovation Program of Hunan Province,China+2 种基金Project(2023YFB4605500) supported by the National Key Research and Development Program of ChinaProject(AHL2022KF04) supported by the Advanced Laser Technology Laboratory of Anhui Province,ChinaProject(kq2402089) supported by the Changsha Natural Science Foundation,China。
文摘High-energy continuous wave(CW)lasers are mostly used in laser damage applications,but efficient laser ablation of transparent materials is challenging due to low optical absorption.Considering the potential of femtosecond(fs)laser-induced air filament for high-peak laser transmission over long distances,femtosecond(fs)laser-induced air filaments are combined with a millisecond(ms)laser to form an fs-ms CPL,enhancing the efficiency of sapphire ablation through synchronized spatial-temporal focusing.Experimental results show that ablation efficiency increases with the ms peak power and duty ratio.Excessive thermal stress leads to fragmentation of the sapphire when the ms duty ratio is over 30%at the peak power of 800 W,or when the peak power is over 500 W at a duty ratio of 100%.Also,the mechanism of high-efficiency damage is revealed through in-situ high-speed imaging.According to it,the ablation process went through 4 stages within 1.5 ms:defect-creating,melting and ablation,spattering,and fragmentation.Finally,the equivalent ablation efficiency of the fs-ms CPL is as high as 1.73×10^(7)μm^(3)/J,about 28 times higher compared to the fs laser only.The CPL damage method explored in this paper can provide theoretical guidance for efficient laser damage of transparent materials.
基金Projects(862016(Bio Combs4Nanofibres)HELLAS-CH+1 种基金MIS 5002735) funded by the Operational Programme “Competitiveness, Entrepreneurship and Innovation” and co-financed by Greece and the EU (European Regional Development Fund)Project (COST Action TUMIEE) supported by COST-European Cooperation in Science and Technology。
文摘Femtosecond pulsed lasers have been widely used over the past decades due to their capability to fabricate precise patterns at the micro-and nano-lengths scales. A key issue for efficient material processing is the determination of the laser parameters used in the experimental set ups. Despite a systematic investigation that has been performed to highlight the impact of every parameter independently, little attention has been drawn on the role of the substrate material on which the irradiated solid is placed. In this work, the influence of the substrate is emphasised for films of various thicknesses, which demonstrates that both the optical and thermophysical properties of the substrate affect the thermal fingerprint on the irradiated film while the impact is manifested to be higher at smaller film sizes. Two representative materials, silicon and fused silica, have been selected as typical substrates for thin films(gold and nickel) of different optical and thermophysical behaviour and the thermal response and damage thresholds are evaluated for the irradiated solids. The pronounced influence of the substrate is aimed to pave the way for new and more optimised designs of laserbased fabrication set ups and processing schemes.
文摘We introduce our state-of-the art of“vacuum consistent electrochemistry”to an investigation of the interfaces between oxides and ionic liquid(IL).Pulsed laser deposition(PLD)has been one of the powerful and sophisticated techniques to realize nanoscale preparation of high-quality epitaxial oxide thin films.On the other hand,electrochemistry is a simple,very sensitive,and non-destructive analysis technique for solid-liquid interfaces.To ensure the reproducibility in experiment of the interfaces of such epitaxial oxide films,as well as bulk oxide single-crystals,with IL,we employ a home-built PLD-electrochemical(EC)system with IL as an electrolyte.The system allows one to perform all-in-vacuum experiments during the preparation of well-defined oxide electrode surfaces to their electrochemical analyses.The topics include electrochemical evaluations of the oxide’s own properties,such as carrier density and relative permittivity,and the interfacial properties of oxides in contact with IL,such as flat band potential and electric double layer(EDL)capacitance,ending with future perspectives in all-solid-state electrochemistry.
基金Supported by the National Natural Science Foundation of China(12064028)Jiangxi Provincial Natural Science Foundation(20232BAB201045).
文摘Electro-Optic Sampling(EOS)detection technique has been widely used in terahertz science and tech⁃nology,and it also can measure the field time waveform of the few-cycle laser pulse.Its frequency response and band limitation are determined directly by the electro-optic crystal and duration of the probe laser pulse.Here,we investigate the performance of the EOS with thin GaSe crystal in the measurement of the mid-infrared few-cycle la⁃ser pulse.The shift of the central frequency and change of the bandwidth induced by the EOS detection are calcu⁃lated,and then the pulse distortions induced in this detection process are discussed.It is found that this technique produces a red-shift of the central frequency and narrowing of the bandwidth.These changings decrease when the laser wavelength increases from 2μm to 10μm.This work can help to estimate the performance of the EOS de⁃tection technique in the mid-infrared band and offer a reference for the related experiment as well.