In this work,the chromium aluminum nitride(CrAlN)coatings were prepared on TC11 titanium alloy by composite magnetic field cathodic arc ion plating with controllable pulse electromagnetic combined with permanent magne...In this work,the chromium aluminum nitride(CrAlN)coatings were prepared on TC11 titanium alloy by composite magnetic field cathodic arc ion plating with controllable pulse electromagnetic combined with permanent magnet.The effects of electromagnetic frequency on the morphology,microstructure,nano-hardness and elastic modulus of the coatings were investigated by scanning electron microscope(SEM),X-ray diffraction(XRD)and nano-indenter.This paper has mainly studied the influence of CrAlN coatings which are prepared at various electromagnetic frequencies on the wear and erosion resistance through a series of wear and solid particle erosion experiments.It was found that the deposition rate of CrAlN coatings increases with the increase of electromagnetic frequency.And CrAlN coatings all preferentially grew along the(111)crystal plane.At 16.7 Hz,with the increase of pulsed electromagnetic frequency,the hardness is the highest(23.6 GPa)and the adhesion is the highest(41.5 N).In addition,the coating deposition exhibited the best wear and solid erosion resistance at 16.7 Hz and 33.3 Hz,the friction coefficient is about 0.35,and the erosion rate is about 0.2μm/g at 30°and less than 1μm/g at 90°,respectively.These results indicate that the CrAlN coating formed at an appropriate pulsed electromagnetic frequency can achieve excellent mechanical properties,wear and solid erosion resistance.展开更多
In the high speed target environment,there exists serious Doppler effect in the low pulse repetition frequency(LPRF) modulated frequency stepped frequency(MFSF) radar signal.The velocity range of the target is lar...In the high speed target environment,there exists serious Doppler effect in the low pulse repetition frequency(LPRF) modulated frequency stepped frequency(MFSF) radar signal.The velocity range of the target is large and the velocity is high ambiguous,so the single method is difficult to satisfy the velocity measurement requirement.For this problem,a novel method is presented,it is a combination of cross-correlation inner frame velocity measurement and range-Doppler coupling velocity measurement.The cross-correlation inner frame method,overcoming the low Doppler tolerance of the cross-correlation between frames,can obtain the coarse velocity of the high speed target,and then the precision velocity can be obtained with the range-Doppler coupling method.The simulation results confirm the method is effective,and also it is well real-time and easy to the project application.展开更多
Reaction control system(RCS) is a powerful and efficient actuator for space vehicles attitude control, which is typically characterized as a pulsed unilateral effector only with two states(off/on). Along with inevitab...Reaction control system(RCS) is a powerful and efficient actuator for space vehicles attitude control, which is typically characterized as a pulsed unilateral effector only with two states(off/on). Along with inevitable internal uncertainties and external disturbances in practice, this inherent nonlinear character always hinders space vehicles autopilot from pursuing precise tracking performance. Compared to most of pre-existing methodologies that passively suppress the uncertainties and disturbances, a design based on predictive functional control(PFC) and generalized extended state observer(GESO) is firstly proposed for three-axis RCS control system to actively reject that with no requirement for additional fuel consumption. To obtain a high fidelity predictive model on which the performance of PFC greatly depends, the nonlinear coupling multiple-input multiple-output(MIMO) flight dynamics model is parameterized as a state-dependent coefficient form. And based on that, a MIMO PFC algorithm in state space domain for a plant of arbitrary orders is deduced in this paper.The internal uncertainties and external disturbances are lumped as a total disturbance, which is estimated and cancelled timely to further enhance the robustness. The continuous control command synthesised by above controller-rejector tandem is finally modulated by pulse width pulse frequency modulator(PWPF) to on-off signals to meet RCS requirement. The robustness and feasibility of the proposed design are validated by a series of performance comparison simulations with some prominent methods in the presence of significant perturbations and disturbances, as well as measurement noise.展开更多
基金Projects(2017GDAS CX-0202,2017GDAS CX-0111,2018 GDAS CX-0402) supported by Guangdong Academy of Science’ Special Project of Science and Technology Development,ChinaProject(2014B070705007) supported by Guangdong Science and Technology Plan Project,China+1 种基金Project(2016A030312015) supported by Scientific Research Fund of Guangdong Province,ChinaProject(2017A070701027) supported by Guangdong Science and Technology Program,China。
文摘In this work,the chromium aluminum nitride(CrAlN)coatings were prepared on TC11 titanium alloy by composite magnetic field cathodic arc ion plating with controllable pulse electromagnetic combined with permanent magnet.The effects of electromagnetic frequency on the morphology,microstructure,nano-hardness and elastic modulus of the coatings were investigated by scanning electron microscope(SEM),X-ray diffraction(XRD)and nano-indenter.This paper has mainly studied the influence of CrAlN coatings which are prepared at various electromagnetic frequencies on the wear and erosion resistance through a series of wear and solid particle erosion experiments.It was found that the deposition rate of CrAlN coatings increases with the increase of electromagnetic frequency.And CrAlN coatings all preferentially grew along the(111)crystal plane.At 16.7 Hz,with the increase of pulsed electromagnetic frequency,the hardness is the highest(23.6 GPa)and the adhesion is the highest(41.5 N).In addition,the coating deposition exhibited the best wear and solid erosion resistance at 16.7 Hz and 33.3 Hz,the friction coefficient is about 0.35,and the erosion rate is about 0.2μm/g at 30°and less than 1μm/g at 90°,respectively.These results indicate that the CrAlN coating formed at an appropriate pulsed electromagnetic frequency can achieve excellent mechanical properties,wear and solid erosion resistance.
文摘In the high speed target environment,there exists serious Doppler effect in the low pulse repetition frequency(LPRF) modulated frequency stepped frequency(MFSF) radar signal.The velocity range of the target is large and the velocity is high ambiguous,so the single method is difficult to satisfy the velocity measurement requirement.For this problem,a novel method is presented,it is a combination of cross-correlation inner frame velocity measurement and range-Doppler coupling velocity measurement.The cross-correlation inner frame method,overcoming the low Doppler tolerance of the cross-correlation between frames,can obtain the coarse velocity of the high speed target,and then the precision velocity can be obtained with the range-Doppler coupling method.The simulation results confirm the method is effective,and also it is well real-time and easy to the project application.
文摘Reaction control system(RCS) is a powerful and efficient actuator for space vehicles attitude control, which is typically characterized as a pulsed unilateral effector only with two states(off/on). Along with inevitable internal uncertainties and external disturbances in practice, this inherent nonlinear character always hinders space vehicles autopilot from pursuing precise tracking performance. Compared to most of pre-existing methodologies that passively suppress the uncertainties and disturbances, a design based on predictive functional control(PFC) and generalized extended state observer(GESO) is firstly proposed for three-axis RCS control system to actively reject that with no requirement for additional fuel consumption. To obtain a high fidelity predictive model on which the performance of PFC greatly depends, the nonlinear coupling multiple-input multiple-output(MIMO) flight dynamics model is parameterized as a state-dependent coefficient form. And based on that, a MIMO PFC algorithm in state space domain for a plant of arbitrary orders is deduced in this paper.The internal uncertainties and external disturbances are lumped as a total disturbance, which is estimated and cancelled timely to further enhance the robustness. The continuous control command synthesised by above controller-rejector tandem is finally modulated by pulse width pulse frequency modulator(PWPF) to on-off signals to meet RCS requirement. The robustness and feasibility of the proposed design are validated by a series of performance comparison simulations with some prominent methods in the presence of significant perturbations and disturbances, as well as measurement noise.