In order to investigate the stability problem of shield tunnel faces subjected to seismic loading,the pseudodynamic method(P-DM)was employed to analyze the seismic effect on the face.Two kinds of failure mechanisms of...In order to investigate the stability problem of shield tunnel faces subjected to seismic loading,the pseudodynamic method(P-DM)was employed to analyze the seismic effect on the face.Two kinds of failure mechanisms of active collapse and passive extrusion were considered,and a seismic reliability model of shield tunnel faces under multifailure mode was established.The limit analysis method and the response surface method(RSM)were used together to solve the reliability of shield tunnel faces subjected to seismic action.Comparing with existing results,the results of this work are effective.The effects of seismic load and rock mass strength on the collapse pressure,extrusion pressure and reliability index were discussed,and reasonable ranges of support pressure of shield tunnel faces under seismic action were presented.This method can provide a new idea for solving the shield thrust parameter under the seismic loading.展开更多
In order to evaluate the seismic stability of reinforced soil walls against bearing capacity failure,the seismic safety factor of reinforced soil walls was determined by using pseudo-dynamic method,and calculated by c...In order to evaluate the seismic stability of reinforced soil walls against bearing capacity failure,the seismic safety factor of reinforced soil walls was determined by using pseudo-dynamic method,and calculated by considering different parameters,such as horizontal and vertical seismic acceleration coefficients,ratio of reinforcement length to wall height,back fill friction angle,foundation soil friction angle,soil reinforcement interface friction angle and surcharge.The parametric study shows that the seismic safety factor increases by 24-fold when the foundation soil friction angle varies from 25°to 45°,and increases by 2-fold when the soil reinforcement interface friction angle varies from 0 to 30°.That is to say,the bigger values the foundation soil and/or soil reinforcement interface friction angles have,the safer the reinforced soil walls become in the seismic design.The results were also compared with those obtained from pseudo-static method.It is found that there is a higher value of the safety factor by the present work.展开更多
A new method was presented to determine the safety factor of wall stability against overturning based on pseudo-dynamic approach. In this time-dependent method, the actual dynamic effect with variation of time and pro...A new method was presented to determine the safety factor of wall stability against overturning based on pseudo-dynamic approach. In this time-dependent method, the actual dynamic effect with variation of time and propagation of shear and primary wave velocities through the backfills was considered. Planar failure surface was considered behind the retaining wall. The results were compared with those obtained from Mononobe-Okabe theory. It is found that there is a higher value of safety factor by the present dynamic analysis. The effects of wall inclination, wall friction angle, soil friction angle and horizontal and vertical seismic coefficients on the overturning stability of retaining wall were investigated. The parametric study shows that both horizontal and vertical seismic accelerations have decreasing effect on the overturning stability of retaining wall.展开更多
A formula was derived for the computation of seismic active earth pressure behind retaining wall using pseudo-dynamic method.This formula considered the actual dynamic effect with variation of time and propagation of ...A formula was derived for the computation of seismic active earth pressure behind retaining wall using pseudo-dynamic method.This formula considered the actual dynamic effect with variation of time and propagation of shear and primary wave velocities through the soil backfills.The influence of tension crack in the top portion of the backfill under seismic loading was investigated.The effects of wall friction angle,soil friction angle,horizontal and vertical seismic coefficients on the seismic active force were also explored.The parametric study shows that the total seismic active force increases as horizontal seismic coefficient increases,while it decreases with the increase in vertical seismic coefficient,internal friction angle and unit cohesion.The seismic active force calculated by the proposed method is larger than that calculated by previous theory.展开更多
The required reinforcement force to prevent instability and the yield acceleration of reinforced slopes are computed under seismic loading by applying the kinematic approach of limit analysis in conjunction with the p...The required reinforcement force to prevent instability and the yield acceleration of reinforced slopes are computed under seismic loading by applying the kinematic approach of limit analysis in conjunction with the pseudo-dynamic method for a wide range of soil cohesion, friction angle, dilation angle and horizontal and vertical seismic coefficients. Each parameter threatening the stability of the slope enhances the magnitude of the required reinforcement force and vice versa. Moreover, the yield acceleration increases with the increase in soil shear strength parameters but decreases with the increase in the slope angle. The comparison of the present work with some of the available solutions in the literatures shows a reasonable agreement.展开更多
Probabilistic analysis is a rational approach for engineering design because it provides more insight than traditional deterministic analysis. Probabilistic evaluation on seismic stability of three dimensional (3D) sl...Probabilistic analysis is a rational approach for engineering design because it provides more insight than traditional deterministic analysis. Probabilistic evaluation on seismic stability of three dimensional (3D) slopes is studied in this paper. The slope safety factor is computed by combining the kinematic approach of limit analysis using a three-dimensional rotational failure mechanism with the pseudo-dynamic approach. The variability of input parameters, including six pseudo-dynamic parameters and two soil shear strength parameters, are taken into account by means of Monte-Carlo Simulations (MCS) method. The influences of pseudo-dynamic input variables on the computed failure probabilities are investigated and discussed. It is shown that the obtained failure probabilities increase with the pseudo-dynamic input variables and the pseudo-dynamic approach gives more conservative failure probability estimates compared with the pseudo-static approach.展开更多
A method combining the pseudo-dynamic approach and discretization technique is carried out for computing the active earth pressure.Instead of using a presupposed failure mechanism,discretization technique is introduce...A method combining the pseudo-dynamic approach and discretization technique is carried out for computing the active earth pressure.Instead of using a presupposed failure mechanism,discretization technique is introduced to generate the potential failure surface,which is applicable to the case that soil strength parameters have spatial variability.For the purpose of analyzing the effect of earthquake,pseudo-dynamic approach is adopted to introduce the seismic forces,which can take into account the dynamic properties of seismic acceleration.A new type of micro-element is used to calculate the rate of work of external forces and the rate of internal energy dissipation.The analytical expression of seismic active earth pressure coefficient is deduced in the light of upper bound theorem and the corresponding upper bound solutions are obtained through numerical optimization.The method is validated by comparing the results of this paper with those reported in literatures.The parametric analysis is finally presented to further expound the effect of diverse parameters on active earth pressure under non-uniform soil.展开更多
To address the seismic face stability challenges encountered in urban and subsea tunnel construction,an efficient probabilistic analysis framework for shield tunnel faces under seismic conditions is proposed.Based on ...To address the seismic face stability challenges encountered in urban and subsea tunnel construction,an efficient probabilistic analysis framework for shield tunnel faces under seismic conditions is proposed.Based on the upper-bound theory of limit analysis,an improved three-dimensional discrete deterministic mechanism,accounting for the heterogeneous nature of soil media,is formulated to evaluate seismic face stability.The metamodel of failure probabilistic assessments for seismic tunnel faces is constructed by integrating the sparse polynomial chaos expansion method(SPCE)with the modified pseudo-dynamic approach(MPD).The improved deterministic model is validated by comparing with published literature and numerical simulations results,and the SPCE-MPD metamodel is examined with the traditional MCS method.Based on the SPCE-MPD metamodels,the seismic effects on face failure probability and reliability index are presented and the global sensitivity analysis(GSA)is involved to reflect the influence order of seismic action parameters.Finally,the proposed approach is tested to be effective by a engineering case of the Chengdu outer ring tunnel.The results show that higher uncertainty of seismic response on face stability should be noticed in areas with intense earthquakes and variation of seismic wave velocity has the most profound influence on tunnel face stability.展开更多
This study investigated the physicochemical properties,enzyme activities,volatile flavor components,microbial communities,and sensory evaluation of high-temperature Daqu(HTD)during the maturation process,and a standar...This study investigated the physicochemical properties,enzyme activities,volatile flavor components,microbial communities,and sensory evaluation of high-temperature Daqu(HTD)during the maturation process,and a standard system was established for comprehensive quality evaluation of HTD.There were obvious changes in the physicochemical properties,enzyme activities,and volatile flavor components at different storage periods,which affected the sensory evaluation of HTD to a certain extent.The results of high-throughput sequencing revealed significant microbial diversity,and showed that the bacterial community changed significantly more than did the fungal community.During the storage process,the dominant bacterial genera were Kroppenstedtia and Thermoascus.The correlation between dominant microorganisms and quality indicators highlighted their role in HTD quality.Lactococcus,Candida,Pichia,Paecilomyces,and protease activity played a crucial role in the formation of isovaleraldehyde.Acidic protease activity had the greatest impact on the microbial community.Moisture promoted isobutyric acid generation.Furthermore,the comprehensive quality evaluation standard system was established by the entropy weight method combined with multi-factor fuzzy mathematics.Consequently,this study provides innovative insights for comprehensive quality evaluation of HTD during storage and establishes a groundwork for scientific and rational storage of HTD and quality control of sauce-flavor Baijiu.展开更多
Shock wave caused by a sudden release of high-energy,such as explosion and blast,usually affects a significant range of areas.The utilization of a uniform fine mesh to capture sharp shock wave and to obtain precise re...Shock wave caused by a sudden release of high-energy,such as explosion and blast,usually affects a significant range of areas.The utilization of a uniform fine mesh to capture sharp shock wave and to obtain precise results is inefficient in terms of computational resource.This is particularly evident when large-scale fluid field simulations are conducted with significant differences in computational domain size.In this work,a variable-domain-size adaptive mesh enlargement(vAME)method is developed based on the proposed adaptive mesh enlargement(AME)method for modeling multi-explosives explosion problems.The vAME method reduces the division of numerous empty areas or unnecessary computational domains by adaptively suspending enlargement operation in one or two directions,rather than in all directions as in AME method.A series of numerical tests via AME and vAME with varying nonintegral enlargement ratios and different mesh numbers are simulated to verify the efficiency and order of accuracy.An estimate of speedup ratio is analyzed for further efficiency comparison.Several large-scale near-ground explosion experiments with single/multiple explosives are performed to analyze the shock wave superposition formed by the incident wave,reflected wave,and Mach wave.Additionally,the vAME method is employed to validate the accuracy,as well as to investigate the performance of the fluid field and shock wave propagation,considering explosive quantities ranging from 1 to 5 while maintaining a constant total mass.The results show a satisfactory correlation between the overpressure versus time curves for experiments and numerical simulations.The vAME method yields a competitive efficiency,increasing the computational speed to 3.0 and approximately 120,000 times in comparison to AME and the fully fine mesh method,respectively.It indicates that the vAME method reduces the computational cost with minimal impact on the results for such large-scale high-energy release problems with significant differences in computational domain size.展开更多
In this paper,a new technique is introduced to construct higher-order iterative methods for solving nonlinear systems.The order of convergence of some iterative methods can be improved by three at the cost of introduc...In this paper,a new technique is introduced to construct higher-order iterative methods for solving nonlinear systems.The order of convergence of some iterative methods can be improved by three at the cost of introducing only one additional evaluation of the function in each step.Furthermore,some new efficient methods with a higher-order of convergence are obtained by using only a single matrix inversion in each iteration.Analyses of convergence properties and computational efficiency of these new methods are made and testified by several numerical problems.By comparison,the new schemes are more efficient than the corresponding existing ones,particularly for large problem sizes.展开更多
To address the problems of low accuracy by the CONWEP model and poor efficiency by the Coupled Eulerian-Lagrangian(CEL)method in predicting close-range air blast loads of cylindrical charges,a neural network-based sim...To address the problems of low accuracy by the CONWEP model and poor efficiency by the Coupled Eulerian-Lagrangian(CEL)method in predicting close-range air blast loads of cylindrical charges,a neural network-based simulation(NNS)method with higher accuracy and better efficiency was proposed.The NNS method consisted of three main steps.First,the parameters of blast loads,including the peak pressures and impulses of cylindrical charges with different aspect ratios(L/D)at different stand-off distances and incident angles were obtained by two-dimensional numerical simulations.Subsequently,incident shape factors of cylindrical charges with arbitrary aspect ratios were predicted by a neural network.Finally,reflected shape factors were derived and implemented into the subroutine of the ABAQUS code to modify the CONWEP model,including modifications of impulse and overpressure.The reliability of the proposed NNS method was verified by related experimental results.Remarkable accuracy improvement was acquired by the proposed NNS method compared with the unmodified CONWEP model.Moreover,huge efficiency superiority was obtained by the proposed NNS method compared with the CEL method.The proposed NNS method showed good accuracy when the scaled distance was greater than 0.2 m/kg^(1/3).It should be noted that there is no need to generate a new dataset again since the blast loads satisfy the similarity law,and the proposed NNS method can be directly used to simulate the blast loads generated by different cylindrical charges.The proposed NNS method with high efficiency and accuracy can be used as an effective method to analyze the dynamic response of structures under blast loads,and it has significant application prospects in designing protective structures.展开更多
Red-green-blue(RGB)beam combiners are widely used in scenarios such as augmented reality/virtual reality(AR/VR),laser projection,biochemical detection,and other fields.Optical waveguide combiners have attracted extens...Red-green-blue(RGB)beam combiners are widely used in scenarios such as augmented reality/virtual reality(AR/VR),laser projection,biochemical detection,and other fields.Optical waveguide combiners have attracted extensive attention due to their advantages of small size,high multiplexing efficiency,convenient mass production,and low cost.An RGB beam combiner based on directional couplers is designed,with a core-cladding relative refractive index difference of 0.75%.The RGB beam combiner is optimized from the perspective of parameter optimization.Using the beam propagation method(BPM),the relationship between the performance of the RGB beam combiner and individual parameters is studied,achieving preliminary optimization of the device’s performance.The key parameters of the RGB beam combiner are optimized using the entropy weight-technique for order preference by similarity to an ideal solution TOPSIS method,establishing the optimal parameter scheme and further improving the device’s performance indicators.The results show that after optimization,the multiplexing efficiencies for red,green,and blue lights,as well as the average multiplexing efficiency,reached 99.17%,99.76%,96.63%and 98.52%,respectively.The size of the RGB beam combiner is 4.768 mm×0.062 mm.展开更多
To address the issues of peak overlap caused by complex matrices in agricultural product terahertz(THz)spectral signals and the dynamic,nonlinear interference induced by environmental and system noise,this study explo...To address the issues of peak overlap caused by complex matrices in agricultural product terahertz(THz)spectral signals and the dynamic,nonlinear interference induced by environmental and system noise,this study explores the feasibility of adaptive-signal-decomposition-based denoising methods to improve THz spectral quality.THz time-domain spectroscopy(THz-TDS)combined with an attenuated total reflection(ATR)accessory was used to collect THz absorbance spectra from 48 peanut samples.Taking the quantitative prediction model of peanut moisture content based on THz-ATR as an example,wavelet transform(WT),empirical mode decomposition(EMD),local mean decomposition(LMD),and its improved methods-segmented local mean decomposition(SLMD)and piecewise mirror extension local mean decomposition(PME-LMD)-were employed for spectral denoising.The applicability of different denoising methods was evaluated using a support vector regression(SVR)model.Experimental results show that the peanut moisture content prediction model constructed after PME-LMD denoising achieved the best performance,with a root mean square error(RMSE),coefficient of determination(R^(2)),and mean absolute percentage error(MAPE)of 0.010,0.912,and 0.040,respectively.Compared with traditional methods,PME-LMD significantly improved spectral quality and model prediction performance.The PME-LMD denoising strategy proposed in this study effectively suppresses non-uniform noise interference in THz spectral signals,providing an efficient and accurate preprocessing method for THz spectral analysis of agricultural products.This research provides theoretical support and technical guidance for the application of THz technology for detecting agricultural product quality.展开更多
The surrounding rock is prone to large-scale loosening and failure after the excavation of shallow large-span caverns because of the thin overlying strata and large cross-section span.The rational design of bolt suppo...The surrounding rock is prone to large-scale loosening and failure after the excavation of shallow large-span caverns because of the thin overlying strata and large cross-section span.The rational design of bolt support is very important to the safety control of surrounding rock as a common support means.The control mechanism and design method of bolt support for shallow-buried large-span caverns is carried out.The calculation method of bolt prestress and length based on arched failure and collapsed failure mode is established.The influence mechanism of different influencing factors on the bolt prestress and length is clarified.At the same time,the constant resistance energy-absorbing bolt with high strength and high toughness is developed,and the comparative test of mechanical properties is carried out.On this basis,the design method of high prestressed bolt support for shallow-buried large-span caverns is put forward,and the field test is carried out in Qingdao metro station in China.The monitoring results show that the maximum roof settlement is 6.8 mm after the new design method is adopted,and the effective control of the shallow-buried large-span caverns is realized.The research results can provide theoretical and technical support for the safety control of shallow-buried large-span caverns.展开更多
To study the influence of silicon(Si)on 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane(CL-20),NC/CL-20 composite explosives and Si/NC/CL-20 composite explosives were prepared by the electrostatic spraying ...To study the influence of silicon(Si)on 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane(CL-20),NC/CL-20 composite explosives and Si/NC/CL-20 composite explosives were prepared by the electrostatic spraying method.The morphology,structure and thermal decomposition properties of the samples were analyzed using scanning electron microscopy(SEM),X-ray energy spectroscopy(EDS),infrared spectroscopy(FT-IR),and simultaneous thermal analyzer(TG-DSC).Additionally,the combustion process of the samples was tested using a high-speed camera.The results show that the addition of nano-Si contributes to the formation of composite explosives with regular morphology and smaller particle size.The Si/NC/CL-20 composite explosive has better and more uniform sphericity,with an average particle size of 73.4 nm,compared to the NC/CL-20 composite explosive.The Si/NC/CL-20 composite explosive which produced by the electrostatic spraying method,achieves physically uniform distribution of the components including NC,CL-20,Si.The addition of Si promotes the thermal decomposition of CL-20.In comparison to the NC/CL-20 composite explosive,the activation energy of the Si/NC/CL-20 composite explosive decreases by 16.78 kJ/mol,and the self-accelerated decomposition temperature and the critical temperature of thermal explosion decreases by 3.12 K and 2.61 K,respectively.Furthermore,Si/NC/CL-20 composite explosive has shorter ignition delay time and faster combustion rate compared to the NC/CL-20 composite explosive,which shows that Si can improve the combustion performance of CL-20.展开更多
To enhance the computational efficiency of spatio-temporally discretized phase-field models,we present a high-speed solver specifically designed for the Poisson equations,a component frequently used in the numerical c...To enhance the computational efficiency of spatio-temporally discretized phase-field models,we present a high-speed solver specifically designed for the Poisson equations,a component frequently used in the numerical computation of such models.This efficient solver employs algorithms based on discrete cosine transformations(DCT)or discrete sine transformations(DST)and is not restricted by any spatio-temporal schemes.Our proposed methodology is appropriate for a variety of phase-field models and is especially efficient when combined with flow field systems.Meanwhile,this study has conducted an extensive numerical comparison and found that employing DCT and DST techniques not only yields results comparable to those obtained via the Multigrid(MG)method,a conventional approach used in the resolution of the Poisson equations,but also enhances computational efficiency by over 90%.展开更多
This paper examined how microstructure influences the homogenized thermal conductivity of cellular structures and revealed a surface-induced size-dependent effect.This effect is linked to the porous microstructural fe...This paper examined how microstructure influences the homogenized thermal conductivity of cellular structures and revealed a surface-induced size-dependent effect.This effect is linked to the porous microstructural features of cellular structures,which stems from the degree of porosity and the distri-bution of the pores.Unlike the phonon-driven surface effect at the nanoscale,the macro-scale surface mechanism in thermal cellular structures is found to be the microstructure-induced changes in the heat conduction path based on fully resolved 3D numerical simulations.The surface region is determined by the microstructure,characterized by the intrinsic length.With the coupling between extrinsic and intrinsic length scales under the surface mechanism,a surface-enriched multiscale method was devel-oped to accurately capture the complex size-dependent thermal conductivity.The principle of scale separation required by classical multiscale methods is not necessary to be satisfied by the proposed multiscale method.The significant potential of the surface-enriched multiscale method was demon-strated through simulations of the effective thermal conductivity of a thin-walled metamaterial struc-ture.The surface-enriched multiscale method offers higher accuracy compared with the classical multiscale method and superior efficiency over high-fidelity finite element methods.展开更多
In this paper,a linear optimization method(LOM)for the design of terahertz circuits is presented,aimed at enhancing the simulation efficacy and reducing the time of the circuit design workflow.This method enables the ...In this paper,a linear optimization method(LOM)for the design of terahertz circuits is presented,aimed at enhancing the simulation efficacy and reducing the time of the circuit design workflow.This method enables the rapid determination of optimal embedding impedance for diodes across a specific bandwidth to achieve maximum efficiency through harmonic balance simulations.By optimizing the linear matching circuit with the optimal embedding impedance,the method effectively segregates the simulation of the linear segments from the nonlinear segments in the frequency multiplier circuit,substantially improving the speed of simulations.The design of on-chip linear matching circuits adopts a modular circuit design strategy,incorporating fixed load resistors to simplify the matching challenge.Utilizing this approach,a 340 GHz frequency doubler was developed and measured.The results demonstrate that,across a bandwidth of 330 GHz to 342 GHz,the efficiency of the doubler remains above 10%,with an input power ranging from 98 mW to 141mW and an output power exceeding 13 mW.Notably,at an input power of 141 mW,a peak output power of 21.8 mW was achieved at 334 GHz,corresponding to an efficiency of 15.8%.展开更多
This study introduces a comprehensive theoretical framework for accurately calculating the electronic band-structure of strained long-wavelength InAs/GaSb type-Ⅱsuperlattices.Utilizing an eight-band k·p Hamilto⁃...This study introduces a comprehensive theoretical framework for accurately calculating the electronic band-structure of strained long-wavelength InAs/GaSb type-Ⅱsuperlattices.Utilizing an eight-band k·p Hamilto⁃nian in conjunction with a scattering matrix method,the model effectively incorporates quantum confinement,strain effects,and interface states.This robust and numerically stable approach achieves exceptional agreement with experimental data,offering a reliable tool for analyzing and engineering the band structure of complex multi⁃layer systems.展开更多
基金Projects(51804113,52074116)supported by the National Natural Science Foundation of ChinaProject(2020M682563)supported by the China Postdoctoral Science Foundation+1 种基金Project(19C0743)supported by the Scientific Research Foundation of Hunan Provincial Education Department,ChinaProject(E52076)supported by the Science Foundation of Hunan University of Science and Technology,China。
文摘In order to investigate the stability problem of shield tunnel faces subjected to seismic loading,the pseudodynamic method(P-DM)was employed to analyze the seismic effect on the face.Two kinds of failure mechanisms of active collapse and passive extrusion were considered,and a seismic reliability model of shield tunnel faces under multifailure mode was established.The limit analysis method and the response surface method(RSM)were used together to solve the reliability of shield tunnel faces subjected to seismic action.Comparing with existing results,the results of this work are effective.The effects of seismic load and rock mass strength on the collapse pressure,extrusion pressure and reliability index were discussed,and reasonable ranges of support pressure of shield tunnel faces under seismic action were presented.This method can provide a new idea for solving the shield thrust parameter under the seismic loading.
文摘In order to evaluate the seismic stability of reinforced soil walls against bearing capacity failure,the seismic safety factor of reinforced soil walls was determined by using pseudo-dynamic method,and calculated by considering different parameters,such as horizontal and vertical seismic acceleration coefficients,ratio of reinforcement length to wall height,back fill friction angle,foundation soil friction angle,soil reinforcement interface friction angle and surcharge.The parametric study shows that the seismic safety factor increases by 24-fold when the foundation soil friction angle varies from 25°to 45°,and increases by 2-fold when the soil reinforcement interface friction angle varies from 0 to 30°.That is to say,the bigger values the foundation soil and/or soil reinforcement interface friction angles have,the safer the reinforced soil walls become in the seismic design.The results were also compared with those obtained from pseudo-static method.It is found that there is a higher value of the safety factor by the present work.
基金Project(50879077) supported by the National Natural Science Foundation of China
文摘A new method was presented to determine the safety factor of wall stability against overturning based on pseudo-dynamic approach. In this time-dependent method, the actual dynamic effect with variation of time and propagation of shear and primary wave velocities through the backfills was considered. Planar failure surface was considered behind the retaining wall. The results were compared with those obtained from Mononobe-Okabe theory. It is found that there is a higher value of safety factor by the present dynamic analysis. The effects of wall inclination, wall friction angle, soil friction angle and horizontal and vertical seismic coefficients on the overturning stability of retaining wall were investigated. The parametric study shows that both horizontal and vertical seismic accelerations have decreasing effect on the overturning stability of retaining wall.
基金Project(50879077)supported by the National Natural Science Foundation of China
文摘A formula was derived for the computation of seismic active earth pressure behind retaining wall using pseudo-dynamic method.This formula considered the actual dynamic effect with variation of time and propagation of shear and primary wave velocities through the soil backfills.The influence of tension crack in the top portion of the backfill under seismic loading was investigated.The effects of wall friction angle,soil friction angle,horizontal and vertical seismic coefficients on the seismic active force were also explored.The parametric study shows that the total seismic active force increases as horizontal seismic coefficient increases,while it decreases with the increase in vertical seismic coefficient,internal friction angle and unit cohesion.The seismic active force calculated by the proposed method is larger than that calculated by previous theory.
文摘The required reinforcement force to prevent instability and the yield acceleration of reinforced slopes are computed under seismic loading by applying the kinematic approach of limit analysis in conjunction with the pseudo-dynamic method for a wide range of soil cohesion, friction angle, dilation angle and horizontal and vertical seismic coefficients. Each parameter threatening the stability of the slope enhances the magnitude of the required reinforcement force and vice versa. Moreover, the yield acceleration increases with the increase in soil shear strength parameters but decreases with the increase in the slope angle. The comparison of the present work with some of the available solutions in the literatures shows a reasonable agreement.
文摘Probabilistic analysis is a rational approach for engineering design because it provides more insight than traditional deterministic analysis. Probabilistic evaluation on seismic stability of three dimensional (3D) slopes is studied in this paper. The slope safety factor is computed by combining the kinematic approach of limit analysis using a three-dimensional rotational failure mechanism with the pseudo-dynamic approach. The variability of input parameters, including six pseudo-dynamic parameters and two soil shear strength parameters, are taken into account by means of Monte-Carlo Simulations (MCS) method. The influences of pseudo-dynamic input variables on the computed failure probabilities are investigated and discussed. It is shown that the obtained failure probabilities increase with the pseudo-dynamic input variables and the pseudo-dynamic approach gives more conservative failure probability estimates compared with the pseudo-static approach.
基金Projects(51908557,51378510)supported by the National Natural Science Foundation of China。
文摘A method combining the pseudo-dynamic approach and discretization technique is carried out for computing the active earth pressure.Instead of using a presupposed failure mechanism,discretization technique is introduced to generate the potential failure surface,which is applicable to the case that soil strength parameters have spatial variability.For the purpose of analyzing the effect of earthquake,pseudo-dynamic approach is adopted to introduce the seismic forces,which can take into account the dynamic properties of seismic acceleration.A new type of micro-element is used to calculate the rate of work of external forces and the rate of internal energy dissipation.The analytical expression of seismic active earth pressure coefficient is deduced in the light of upper bound theorem and the corresponding upper bound solutions are obtained through numerical optimization.The method is validated by comparing the results of this paper with those reported in literatures.The parametric analysis is finally presented to further expound the effect of diverse parameters on active earth pressure under non-uniform soil.
基金Project([2018]3010)supported by the Guizhou Provincial Science and Technology Major Project,China。
文摘To address the seismic face stability challenges encountered in urban and subsea tunnel construction,an efficient probabilistic analysis framework for shield tunnel faces under seismic conditions is proposed.Based on the upper-bound theory of limit analysis,an improved three-dimensional discrete deterministic mechanism,accounting for the heterogeneous nature of soil media,is formulated to evaluate seismic face stability.The metamodel of failure probabilistic assessments for seismic tunnel faces is constructed by integrating the sparse polynomial chaos expansion method(SPCE)with the modified pseudo-dynamic approach(MPD).The improved deterministic model is validated by comparing with published literature and numerical simulations results,and the SPCE-MPD metamodel is examined with the traditional MCS method.Based on the SPCE-MPD metamodels,the seismic effects on face failure probability and reliability index are presented and the global sensitivity analysis(GSA)is involved to reflect the influence order of seismic action parameters.Finally,the proposed approach is tested to be effective by a engineering case of the Chengdu outer ring tunnel.The results show that higher uncertainty of seismic response on face stability should be noticed in areas with intense earthquakes and variation of seismic wave velocity has the most profound influence on tunnel face stability.
文摘This study investigated the physicochemical properties,enzyme activities,volatile flavor components,microbial communities,and sensory evaluation of high-temperature Daqu(HTD)during the maturation process,and a standard system was established for comprehensive quality evaluation of HTD.There were obvious changes in the physicochemical properties,enzyme activities,and volatile flavor components at different storage periods,which affected the sensory evaluation of HTD to a certain extent.The results of high-throughput sequencing revealed significant microbial diversity,and showed that the bacterial community changed significantly more than did the fungal community.During the storage process,the dominant bacterial genera were Kroppenstedtia and Thermoascus.The correlation between dominant microorganisms and quality indicators highlighted their role in HTD quality.Lactococcus,Candida,Pichia,Paecilomyces,and protease activity played a crucial role in the formation of isovaleraldehyde.Acidic protease activity had the greatest impact on the microbial community.Moisture promoted isobutyric acid generation.Furthermore,the comprehensive quality evaluation standard system was established by the entropy weight method combined with multi-factor fuzzy mathematics.Consequently,this study provides innovative insights for comprehensive quality evaluation of HTD during storage and establishes a groundwork for scientific and rational storage of HTD and quality control of sauce-flavor Baijiu.
基金supported by the National Natural Science Foundation of China(Grant Nos.12302435 and 12221002)。
文摘Shock wave caused by a sudden release of high-energy,such as explosion and blast,usually affects a significant range of areas.The utilization of a uniform fine mesh to capture sharp shock wave and to obtain precise results is inefficient in terms of computational resource.This is particularly evident when large-scale fluid field simulations are conducted with significant differences in computational domain size.In this work,a variable-domain-size adaptive mesh enlargement(vAME)method is developed based on the proposed adaptive mesh enlargement(AME)method for modeling multi-explosives explosion problems.The vAME method reduces the division of numerous empty areas or unnecessary computational domains by adaptively suspending enlargement operation in one or two directions,rather than in all directions as in AME method.A series of numerical tests via AME and vAME with varying nonintegral enlargement ratios and different mesh numbers are simulated to verify the efficiency and order of accuracy.An estimate of speedup ratio is analyzed for further efficiency comparison.Several large-scale near-ground explosion experiments with single/multiple explosives are performed to analyze the shock wave superposition formed by the incident wave,reflected wave,and Mach wave.Additionally,the vAME method is employed to validate the accuracy,as well as to investigate the performance of the fluid field and shock wave propagation,considering explosive quantities ranging from 1 to 5 while maintaining a constant total mass.The results show a satisfactory correlation between the overpressure versus time curves for experiments and numerical simulations.The vAME method yields a competitive efficiency,increasing the computational speed to 3.0 and approximately 120,000 times in comparison to AME and the fully fine mesh method,respectively.It indicates that the vAME method reduces the computational cost with minimal impact on the results for such large-scale high-energy release problems with significant differences in computational domain size.
基金Supported by the National Natural Science Foundation of China(12061048)NSF of Jiangxi Province(20232BAB201026,20232BAB201018)。
文摘In this paper,a new technique is introduced to construct higher-order iterative methods for solving nonlinear systems.The order of convergence of some iterative methods can be improved by three at the cost of introducing only one additional evaluation of the function in each step.Furthermore,some new efficient methods with a higher-order of convergence are obtained by using only a single matrix inversion in each iteration.Analyses of convergence properties and computational efficiency of these new methods are made and testified by several numerical problems.By comparison,the new schemes are more efficient than the corresponding existing ones,particularly for large problem sizes.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52271317 and 52071149)the Fundamental Research Funds for the Central Universities(HUST:2019kfy XJJS007)。
文摘To address the problems of low accuracy by the CONWEP model and poor efficiency by the Coupled Eulerian-Lagrangian(CEL)method in predicting close-range air blast loads of cylindrical charges,a neural network-based simulation(NNS)method with higher accuracy and better efficiency was proposed.The NNS method consisted of three main steps.First,the parameters of blast loads,including the peak pressures and impulses of cylindrical charges with different aspect ratios(L/D)at different stand-off distances and incident angles were obtained by two-dimensional numerical simulations.Subsequently,incident shape factors of cylindrical charges with arbitrary aspect ratios were predicted by a neural network.Finally,reflected shape factors were derived and implemented into the subroutine of the ABAQUS code to modify the CONWEP model,including modifications of impulse and overpressure.The reliability of the proposed NNS method was verified by related experimental results.Remarkable accuracy improvement was acquired by the proposed NNS method compared with the unmodified CONWEP model.Moreover,huge efficiency superiority was obtained by the proposed NNS method compared with the CEL method.The proposed NNS method showed good accuracy when the scaled distance was greater than 0.2 m/kg^(1/3).It should be noted that there is no need to generate a new dataset again since the blast loads satisfy the similarity law,and the proposed NNS method can be directly used to simulate the blast loads generated by different cylindrical charges.The proposed NNS method with high efficiency and accuracy can be used as an effective method to analyze the dynamic response of structures under blast loads,and it has significant application prospects in designing protective structures.
基金Project(52175445)supported by the National Natural Science Foundation of ChinaProject(2022JJ30743)supported by the Natural Science Foundation of Hunan Province,China+1 种基金Project(2023GK2024)supported by the Key Research and Development Program of Hunan Province,ChinaProject(2023ZZTS0391)supported by the Fundamental Research Funds for the Central Universities of China。
文摘Red-green-blue(RGB)beam combiners are widely used in scenarios such as augmented reality/virtual reality(AR/VR),laser projection,biochemical detection,and other fields.Optical waveguide combiners have attracted extensive attention due to their advantages of small size,high multiplexing efficiency,convenient mass production,and low cost.An RGB beam combiner based on directional couplers is designed,with a core-cladding relative refractive index difference of 0.75%.The RGB beam combiner is optimized from the perspective of parameter optimization.Using the beam propagation method(BPM),the relationship between the performance of the RGB beam combiner and individual parameters is studied,achieving preliminary optimization of the device’s performance.The key parameters of the RGB beam combiner are optimized using the entropy weight-technique for order preference by similarity to an ideal solution TOPSIS method,establishing the optimal parameter scheme and further improving the device’s performance indicators.The results show that after optimization,the multiplexing efficiencies for red,green,and blue lights,as well as the average multiplexing efficiency,reached 99.17%,99.76%,96.63%and 98.52%,respectively.The size of the RGB beam combiner is 4.768 mm×0.062 mm.
基金Supported by the National Key R&D Program of China(2023YFD2101001)National Natural Science Foundation of China(32202144,61807001)。
文摘To address the issues of peak overlap caused by complex matrices in agricultural product terahertz(THz)spectral signals and the dynamic,nonlinear interference induced by environmental and system noise,this study explores the feasibility of adaptive-signal-decomposition-based denoising methods to improve THz spectral quality.THz time-domain spectroscopy(THz-TDS)combined with an attenuated total reflection(ATR)accessory was used to collect THz absorbance spectra from 48 peanut samples.Taking the quantitative prediction model of peanut moisture content based on THz-ATR as an example,wavelet transform(WT),empirical mode decomposition(EMD),local mean decomposition(LMD),and its improved methods-segmented local mean decomposition(SLMD)and piecewise mirror extension local mean decomposition(PME-LMD)-were employed for spectral denoising.The applicability of different denoising methods was evaluated using a support vector regression(SVR)model.Experimental results show that the peanut moisture content prediction model constructed after PME-LMD denoising achieved the best performance,with a root mean square error(RMSE),coefficient of determination(R^(2)),and mean absolute percentage error(MAPE)of 0.010,0.912,and 0.040,respectively.Compared with traditional methods,PME-LMD significantly improved spectral quality and model prediction performance.The PME-LMD denoising strategy proposed in this study effectively suppresses non-uniform noise interference in THz spectral signals,providing an efficient and accurate preprocessing method for THz spectral analysis of agricultural products.This research provides theoretical support and technical guidance for the application of THz technology for detecting agricultural product quality.
基金Project(2023YFC3805700) supported by the National Key Research and Development Program of ChinaProjects(42477166,42277174) supported by the National Natural Science Foundation of China+2 种基金Project(2024JCCXSB01) supported by the Fundamental Research Funds for the Central Universities,ChinaProject(KFJJ24-01M) supported by the State Key Laboratory of Explosion Science and Safety Protection,Beijing Institute of Technology,ChinaProject(HLCX-2024-04) supported by the Open Foundation of Collaborative Innovation Center of Green Development and Ecological Restoration of Mineral Resources,China。
文摘The surrounding rock is prone to large-scale loosening and failure after the excavation of shallow large-span caverns because of the thin overlying strata and large cross-section span.The rational design of bolt support is very important to the safety control of surrounding rock as a common support means.The control mechanism and design method of bolt support for shallow-buried large-span caverns is carried out.The calculation method of bolt prestress and length based on arched failure and collapsed failure mode is established.The influence mechanism of different influencing factors on the bolt prestress and length is clarified.At the same time,the constant resistance energy-absorbing bolt with high strength and high toughness is developed,and the comparative test of mechanical properties is carried out.On this basis,the design method of high prestressed bolt support for shallow-buried large-span caverns is put forward,and the field test is carried out in Qingdao metro station in China.The monitoring results show that the maximum roof settlement is 6.8 mm after the new design method is adopted,and the effective control of the shallow-buried large-span caverns is realized.The research results can provide theoretical and technical support for the safety control of shallow-buried large-span caverns.
基金National Natural Science Foundation of China(No.22275150)。
文摘To study the influence of silicon(Si)on 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane(CL-20),NC/CL-20 composite explosives and Si/NC/CL-20 composite explosives were prepared by the electrostatic spraying method.The morphology,structure and thermal decomposition properties of the samples were analyzed using scanning electron microscopy(SEM),X-ray energy spectroscopy(EDS),infrared spectroscopy(FT-IR),and simultaneous thermal analyzer(TG-DSC).Additionally,the combustion process of the samples was tested using a high-speed camera.The results show that the addition of nano-Si contributes to the formation of composite explosives with regular morphology and smaller particle size.The Si/NC/CL-20 composite explosive has better and more uniform sphericity,with an average particle size of 73.4 nm,compared to the NC/CL-20 composite explosive.The Si/NC/CL-20 composite explosive which produced by the electrostatic spraying method,achieves physically uniform distribution of the components including NC,CL-20,Si.The addition of Si promotes the thermal decomposition of CL-20.In comparison to the NC/CL-20 composite explosive,the activation energy of the Si/NC/CL-20 composite explosive decreases by 16.78 kJ/mol,and the self-accelerated decomposition temperature and the critical temperature of thermal explosion decreases by 3.12 K and 2.61 K,respectively.Furthermore,Si/NC/CL-20 composite explosive has shorter ignition delay time and faster combustion rate compared to the NC/CL-20 composite explosive,which shows that Si can improve the combustion performance of CL-20.
基金Supported by Shanxi Province Natural Science Research(202203021212249)Special/Youth Foundation of Taiyuan University of Technology(2022QN101)+3 种基金National Natural Science Foundation of China(12301556)Research Project Supported by Shanxi Scholarship Council of China(2021-029)International Cooperation Base and Platform Project of Shanxi Province(202104041101019)Basic Research Plan of Shanxi Province(202203021211129)。
文摘To enhance the computational efficiency of spatio-temporally discretized phase-field models,we present a high-speed solver specifically designed for the Poisson equations,a component frequently used in the numerical computation of such models.This efficient solver employs algorithms based on discrete cosine transformations(DCT)or discrete sine transformations(DST)and is not restricted by any spatio-temporal schemes.Our proposed methodology is appropriate for a variety of phase-field models and is especially efficient when combined with flow field systems.Meanwhile,this study has conducted an extensive numerical comparison and found that employing DCT and DST techniques not only yields results comparable to those obtained via the Multigrid(MG)method,a conventional approach used in the resolution of the Poisson equations,but also enhances computational efficiency by over 90%.
基金supported by the National Key Research and Development Program of China(Grant No.2021YFB1714600)the National Natural Science Foundation of China(Grant No.52175095)the Young Top-Notch Talent Cultivation Program of Hubei Province of China.
文摘This paper examined how microstructure influences the homogenized thermal conductivity of cellular structures and revealed a surface-induced size-dependent effect.This effect is linked to the porous microstructural features of cellular structures,which stems from the degree of porosity and the distri-bution of the pores.Unlike the phonon-driven surface effect at the nanoscale,the macro-scale surface mechanism in thermal cellular structures is found to be the microstructure-induced changes in the heat conduction path based on fully resolved 3D numerical simulations.The surface region is determined by the microstructure,characterized by the intrinsic length.With the coupling between extrinsic and intrinsic length scales under the surface mechanism,a surface-enriched multiscale method was devel-oped to accurately capture the complex size-dependent thermal conductivity.The principle of scale separation required by classical multiscale methods is not necessary to be satisfied by the proposed multiscale method.The significant potential of the surface-enriched multiscale method was demon-strated through simulations of the effective thermal conductivity of a thin-walled metamaterial struc-ture.The surface-enriched multiscale method offers higher accuracy compared with the classical multiscale method and superior efficiency over high-fidelity finite element methods.
基金Supported by the Beijing Municipal Science&Technology Commission(Z211100004421012),the Key Reaserch and Development Pro⁃gram of China(2022YFF0605902)。
文摘In this paper,a linear optimization method(LOM)for the design of terahertz circuits is presented,aimed at enhancing the simulation efficacy and reducing the time of the circuit design workflow.This method enables the rapid determination of optimal embedding impedance for diodes across a specific bandwidth to achieve maximum efficiency through harmonic balance simulations.By optimizing the linear matching circuit with the optimal embedding impedance,the method effectively segregates the simulation of the linear segments from the nonlinear segments in the frequency multiplier circuit,substantially improving the speed of simulations.The design of on-chip linear matching circuits adopts a modular circuit design strategy,incorporating fixed load resistors to simplify the matching challenge.Utilizing this approach,a 340 GHz frequency doubler was developed and measured.The results demonstrate that,across a bandwidth of 330 GHz to 342 GHz,the efficiency of the doubler remains above 10%,with an input power ranging from 98 mW to 141mW and an output power exceeding 13 mW.Notably,at an input power of 141 mW,a peak output power of 21.8 mW was achieved at 334 GHz,corresponding to an efficiency of 15.8%.
文摘This study introduces a comprehensive theoretical framework for accurately calculating the electronic band-structure of strained long-wavelength InAs/GaSb type-Ⅱsuperlattices.Utilizing an eight-band k·p Hamilto⁃nian in conjunction with a scattering matrix method,the model effectively incorporates quantum confinement,strain effects,and interface states.This robust and numerically stable approach achieves exceptional agreement with experimental data,offering a reliable tool for analyzing and engineering the band structure of complex multi⁃layer systems.