期刊文献+
共找到63篇文章
< 1 2 4 >
每页显示 20 50 100
基于RGB-D图像的语义分割方法综述 被引量:1
1
作者 王晨 杜晨曦 +1 位作者 刘瑞军 齐越 《计算机辅助设计与图形学学报》 北大核心 2025年第1期100-119,共20页
语义分割技术致力于精确识别并分割图像中的各个物体或场景.基于RGB图像的方法在信息利用上存在局限,导致性能受限,随着深度传感器技术的普及,深度图的引入为语义分割网络注入了丰富的几何信息,显著地提升了分割精度.文中介绍了近几年基... 语义分割技术致力于精确识别并分割图像中的各个物体或场景.基于RGB图像的方法在信息利用上存在局限,导致性能受限,随着深度传感器技术的普及,深度图的引入为语义分割网络注入了丰富的几何信息,显著地提升了分割精度.文中介绍了近几年基于RGB-D图像的语义分割方面的显著进展和相关方法,根据对多模态融合特征处理方式的差异,将基于RGB-D图像的语义分割方法归纳为单分支、双分支、三分支网络架构3大类.其中,单分支网络在同一分支同时处理RGB和深度特征,实现特征的有机结合;双分支网络利用RGB和深度特征之间的互补性,优化多模态特征的校正与融合;三分支网络在保留原始的RGB和深度特征的同时,深入挖掘融合特征,确保信息的全面性.同时,总结注意力、模型优化等关键技术,并归纳常用的数据集和评价指标,对比分析各种方法在不同数据集上的性能,最后总结当前RGB-D图像语义分割在多模态数据交互与处理方面所面临的挑战,展望了语义分割技术在跨领域数据融合方向的发展前景. 展开更多
关键词 RGB-d图像 语义分割 多模态特征融合 卷积神经网络
在线阅读 下载PDF
快速3D-CNN结合深度可分离卷积对高光谱图像分类 被引量:2
2
作者 王燕 梁琦 《计算机科学与探索》 CSCD 北大核心 2022年第12期2860-2869,共10页
针对卷积神经网络在高光谱图像特征提取和分类的过程中,存在空谱特征提取不充分以及网络层数太多引起的参数量大、计算复杂的问题,提出快速三维卷积神经网络(3D-CNN)结合深度可分离卷积(DSC)的轻量型卷积模型。该方法首先利用增量主成... 针对卷积神经网络在高光谱图像特征提取和分类的过程中,存在空谱特征提取不充分以及网络层数太多引起的参数量大、计算复杂的问题,提出快速三维卷积神经网络(3D-CNN)结合深度可分离卷积(DSC)的轻量型卷积模型。该方法首先利用增量主成分分析(IPCA)对输入的数据进行降维预处理;其次将输入模型的像素分割成小的重叠的三维小卷积块,在分割的小块上基于中心像素形成地面标签,利用三维核函数进行卷积处理,形成连续的三维特征图,保留空谱特征。用3D-CNN同时提取空谱特征,然后在三维卷积中加入深度可分离卷积对空间特征再次提取,丰富空谱特征的同时减少参数量,从而减少计算时间,分类精度也有所提高。所提模型在Indian Pines、Salinas Scene和University of Pavia公开数据集上验证,并且同其他经典的分类方法进行比较。实验结果表明,该方法不仅能大幅度节省可学习的参数,降低模型复杂度,而且表现出较好的分类性能,其中总体精度(OA)、平均分类精度(AA)和Kappa系数均可达99%以上。 展开更多
关键词 高光谱图像分类 空谱特征提取 三维卷积神经网络(3d-CNN) 深度可分离卷积(dSC) 深度学习
在线阅读 下载PDF
基于多模态特征融合监督的RGB-D图像显著性检测 被引量:16
3
作者 刘政怡 段群涛 +1 位作者 石松 赵鹏 《电子与信息学报》 EI CSCD 北大核心 2020年第4期997-1004,共8页
RGB-D图像显著性检测是在一组成对的RGB和Depth图中识别出视觉上最显著突出的目标区域。已有的双流网络,同等对待多模态的RGB和Depth图像数据,在提取特征方面几乎一致。然而,低层的Depth特征存在较大噪声,不能很好地表征图像特征。因此... RGB-D图像显著性检测是在一组成对的RGB和Depth图中识别出视觉上最显著突出的目标区域。已有的双流网络,同等对待多模态的RGB和Depth图像数据,在提取特征方面几乎一致。然而,低层的Depth特征存在较大噪声,不能很好地表征图像特征。因此,该文提出一种多模态特征融合监督的RGB-D图像显著性检测网络,通过两个独立流分别学习RGB和Depth数据,使用双流侧边监督模块分别获取网络各层基于RGB和Depth特征的显著图,然后采用多模态特征融合模块来融合后3层RGB和Depth高维信息生成高层显著预测结果。网络从第1层至第5层逐步生成RGB和Depth各模态特征,然后从第5层到第3层,利用高层指导低层的方式产生多模态融合特征,接着从第2层到第1层,利用第3层产生的融合特征去逐步地优化前两层的RGB特征,最终输出既包含RGB低层信息又融合RGB-D高层多模态信息的显著图。在3个公开数据集上的实验表明,该文所提网络因为使用了双流侧边监督模块和多模态特征融合模块,其性能优于目前主流的RGB-D显著性检测模型,具有较强的鲁棒性。 展开更多
关键词 RGB-d显著性检测 卷积神经网络 多模态 监督
在线阅读 下载PDF
基于ANNet网络的RGB-D图像的目标检测 被引量:3
4
作者 蔡强 魏立伟 +1 位作者 李海生 曹健 《系统仿真学报》 CAS CSCD 北大核心 2016年第9期2260-2266,共7页
由于深度图像采集设备的广泛使用,使得利用RGB-D图像进行目标检测成为计算机视觉领域研究热点。为了使得利用卷积神经网络所提取的特征更具有鲁棒性,设计了一种改进的卷积神经网络(本文称为ANNet),以提高检测准确率。为了提高卷积层中... 由于深度图像采集设备的广泛使用,使得利用RGB-D图像进行目标检测成为计算机视觉领域研究热点。为了使得利用卷积神经网络所提取的特征更具有鲁棒性,设计了一种改进的卷积神经网络(本文称为ANNet),以提高检测准确率。为了提高卷积层中局部感受区域的模型分辨能力,针对AlexN et网络中卷积层中卷积核与下层数据块的线性特性,将部分卷积层改进为带有多层感知机的非线性卷积层。在NYUD2数据集上实验,结果表明,使用改进后的网络结构,在彩色图像上的检测结果提升了3%,在RGB-D图像上的检测结果提升了4%。 展开更多
关键词 目标检测 卷积神经网络 Alex NET网络 RGB-d图像
在线阅读 下载PDF
基于局部感受野扩张D-MobileNet模型的图像分类方法 被引量:6
5
作者 王威 邹婷 王新 《计算机应用研究》 CSCD 北大核心 2020年第4期1261-1264,1270,共5页
针对轻量级深度神经网络MobileNet会减少分类准确率的问题,将空洞卷积核引入MobileNet模型的某一卷积层中,提出一种基于局部感受野扩张的D-MobileNet模型。该模型根据空洞卷积核所在位置的不同分为三种结构,在不增加参数数量的同时能够... 针对轻量级深度神经网络MobileNet会减少分类准确率的问题,将空洞卷积核引入MobileNet模型的某一卷积层中,提出一种基于局部感受野扩张的D-MobileNet模型。该模型根据空洞卷积核所在位置的不同分为三种结构,在不增加参数数量的同时能够扩大该层卷积核的局部感受野,提高分类精度。实验在Caltech-101数据集、Caltech-256数据集以及图宾根大学动物分类数据库上进行,结果表明,D-MobileNet模型可获得比MobileNet更好的分类准确率,最多可以提高2%。 展开更多
关键词 图像分类 深度神经网络 MobileNet 空洞卷积 d-MobileNet
在线阅读 下载PDF
BTDGCNN:面向三维点云拓扑结构的BallTree动态图卷积神经网络 被引量:4
6
作者 张学典 方慧 《小型微型计算机系统》 CSCD 北大核心 2022年第11期2342-2347,共6页
点云卷积网络对点云进行分割分类时,独立提取点云特征却忽略了点之间的几何关联,从而丢失了许多局部特征.而对稀疏、无结构、无序的点云进行输入转换则会导致数据变得更加庞大,卷积效率降低.为此构建了面向三维点云拓扑结构的BallTree... 点云卷积网络对点云进行分割分类时,独立提取点云特征却忽略了点之间的几何关联,从而丢失了许多局部特征.而对稀疏、无结构、无序的点云进行输入转换则会导致数据变得更加庞大,卷积效率降低.为此构建了面向三维点云拓扑结构的BallTree动态图卷积神经网络,利用Bat-Net变换网络(BallTree transfromation network)对初始无序点云进行空间变换,恢复点云的拓扑结构和距离向量,提高点云中各个点间的关联性,结合三层BAT边卷积模块(BallTree edge convolution network),提升其信息表征能力,以便更好地进行分类分割任务.实验结果表明,该方法在ModelNet40数据集上的分类性能均优于其他五种方法,分别提高了4.4%、2.9%、1.3%、2%和1.4%.同时在ShapeNet Parts数据集上的分割的平均交并比分别提高了1.7%、0.3%、0.3%、0.3%、0.3%,有效地提升了三维点云的分类分割性能. 展开更多
关键词 三维点云 图卷积神经网络 分类 分割
在线阅读 下载PDF
基于注意力-残差双特征流卷积神经网络的深度图帧内编码单元快速划分算法
7
作者 贾克斌 吴岳珩 《北京工业大学学报》 北大核心 2025年第5期539-551,共13页
针对三维高效视频编码(three-dimensional high efficiency video coding,3D-HEVC)深度图编码单元(coding unit,CU)划分复杂度高的问题,提出一种基于卷积神经网络(convolutional neural networks,CNN)的算法来实现快速深度图帧内编码。... 针对三维高效视频编码(three-dimensional high efficiency video coding,3D-HEVC)深度图编码单元(coding unit,CU)划分复杂度高的问题,提出一种基于卷积神经网络(convolutional neural networks,CNN)的算法来实现快速深度图帧内编码。首先,提出一种具有3个分支的注意力-残差双特征流卷积神经网络(attention-residual bi-feature stream convolutional neural networks,ARBS-CNN)模型,其中基于残差模块(residual module,RM)和特征蒸馏(feature distill,FD)模块的2个分支用于提取全局图像特征,基于动态模块(dynamic module,DM)和卷积-卷积块注意力模块(convolutional-convolutional block attention module,Conv-CBAM)的分支用于提取局部图像特征;然后,将提取到的特征进行整合并输出,得到对深度图CU划分结构的预测;最后,将ARBS-CNN嵌入到3D-HEVC测试平台中,利用预测结果加速深度图帧内编码。与原始算法相比,提出的算法能在维持率失真性能几乎不受影响的条件下,平均减少74.2%的编码时间。实验结果表明,该算法能够在保持率失真性能的条件下,有效降低3D-HEVC的编码复杂度。 展开更多
关键词 三维高效视频编码(three-dimensional high efficiency video coding 3d-HEVC) 深度图 卷积神经网络(convolutional neural networks CNN) 编码单元(coding unit CU)划分 帧内编码 双特征流
在线阅读 下载PDF
基于稀疏联结卷积递归神经网络的RGB-D图像识别算法 被引量:6
8
作者 张治安 张旭东 张骏 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2018年第5期582-588,共7页
RGB-D传感器能够同时获取图像的彩色信息和深度信息,深度信息的引入有效提高了图像分类的精度。文章提出了一种基于稀疏联结卷积神经网络的RGB-D图像目标识别方法。该方法以卷积递归神经网络(convolutional and recursive neural networ... RGB-D传感器能够同时获取图像的彩色信息和深度信息,深度信息的引入有效提高了图像分类的精度。文章提出了一种基于稀疏联结卷积神经网络的RGB-D图像目标识别方法。该方法以卷积递归神经网络(convolutional and recursive neural networks,CNN-RNN)深度学习网络为基础,利用一种尺度归一化方法对图像进行处理,并且对CNN滤波器层进行改进;在CNN滤波器层,通过加速稳健特征(speeded up robust features,SURF)算子得到归一化图像中特征点的位置;然后以特征点为中心选取图像块,对所有训练图像的图像块进行训练,从而获取CNN滤波器组层的卷积核;以归一化图像的SURF点为中心确定滤波器层在图像的感受野,所得感受野与卷积核形成局部联结网络,构成了CNN的滤波器组层。实验结果表明,该方法有效地提高了图像的识别精度,具有较强的鲁棒性。 展开更多
关键词 RGB-d图像 目标识别 深度学习 卷积神经网络 递归神经网络
在线阅读 下载PDF
基于脸部RGB-D图像的牛只个体识别方法 被引量:4
9
作者 刘世锋 常蕊 +3 位作者 李斌 卫勇 王海峰 贾楠 《农业机械学报》 EI CAS CSCD 北大核心 2023年第S01期260-266,共7页
为实现非接触、高精度个体识别,本文提出了一种基于牛只脸部RGB-D信息融合的个体身份识别方法。以108头28~30月龄荷斯坦奶牛作为研究对象,利用Intel RealSense D455深度相机采集2334幅牛脸彩色/深度图像作为原始数据集。首先,采用冗余... 为实现非接触、高精度个体识别,本文提出了一种基于牛只脸部RGB-D信息融合的个体身份识别方法。以108头28~30月龄荷斯坦奶牛作为研究对象,利用Intel RealSense D455深度相机采集2334幅牛脸彩色/深度图像作为原始数据集。首先,采用冗余图像剔除方法和自适应阈值背景分离算法进行图像预处理,经增强共得到8344幅牛脸图像作为数据集;然后,分别选取Inception ResNet v1、Inception ResNet v2和SqueezeNet共3种特征提取网络进行奶牛脸部特征提取研究,通过对比分析,确定FaceNet模型的最优主干特征提取网络;最后,将提取的牛脸图像特征L2正则化,并映射至同一特征空间,训练分类器实现奶牛个体分类。测试结果表明,采用Inception ResNet v2作为FaceNet模型的主干网络特征提取效果最优,在经过背景分离数据预处理的数据集上测试牛脸识别准确率为98.6%,验证率为81.9%,误识率为0.10%。与Inception ResNet v1、SqueezeNet网络相比,准确率分别提高1、2.9个百分点;与未进行背景分离的数据集相比,准确率提高2.3个百分点。 展开更多
关键词 牛脸识别 RGB-d 深度学习 卷积神经网络
在线阅读 下载PDF
应用3维同步荧光光谱测定胭脂红浓度 被引量:3
10
作者 杜家蒙 陈国庆 +4 位作者 马超群 奚留华 朱纯 赵金辰 顾颂 《激光技术》 CAS CSCD 北大核心 2017年第4期503-506,共4页
为了测定混合色素溶液中胭脂红的浓度,采用归一化的方法对荧光光谱进行数据预处理,将处理后的光谱数据结合径向基神经网络,建立了对胭脂红含量的预测模型。结果表明,3维同步荧光光谱、普通3维荧光光谱预测结果的平均相对误差分别为2.86%... 为了测定混合色素溶液中胭脂红的浓度,采用归一化的方法对荧光光谱进行数据预处理,将处理后的光谱数据结合径向基神经网络,建立了对胭脂红含量的预测模型。结果表明,3维同步荧光光谱、普通3维荧光光谱预测结果的平均相对误差分别为2.86%,11.12%;对于混合色素溶液中单个色素浓度的测定,3维同步荧光光谱结合径向基神经网络效果较好。该研究为预测混合色素溶液中各色素浓度提供了帮助。 展开更多
关键词 光谱学 3维同步荧光光谱 径向基神经网络 胭脂红
在线阅读 下载PDF
3维卷积递归神经网络的高光谱图像分类方法 被引量:9
11
作者 关世豪 杨桄 +1 位作者 李豪 付严宇 《激光技术》 CAS CSCD 北大核心 2020年第4期485-491,共7页
为了针对高光谱图像中空间信息与光谱信息的不同特性进行特征提取,提出一种3维卷积递归神经网络(3-D-CRNN)的高光谱图像分类方法。首先采用3维卷积神经网络提取目标像元的局部空间特征信息,然后利用双向循环神经网络对融合了局部空间信... 为了针对高光谱图像中空间信息与光谱信息的不同特性进行特征提取,提出一种3维卷积递归神经网络(3-D-CRNN)的高光谱图像分类方法。首先采用3维卷积神经网络提取目标像元的局部空间特征信息,然后利用双向循环神经网络对融合了局部空间信息的光谱数据进行训练,提取空谱联合特征,最后使用Softmax损失函数训练分类器实现分类。3-D-CRNN模型无需对高光谱图像进行复杂的预处理和后处理,可以实现端到端的训练,并且能够充分提取空间与光谱数据中的语义信息。结果表明,与其它基于深度学习的分类方法相比,本文中的方法在Pavia University与Indian Pines数据集上分别取得了99.94%和98.81%的总体分类精度,有效地提高了高光谱图像的分类精度与分类效果。该方法对高光谱图像的特征提取具有一定的启发意义。 展开更多
关键词 光谱学 高光谱图像分类 3维卷积神经网络 双向循环神经网络 空谱联合特征
在线阅读 下载PDF
基于空间结构化推理深度融合网络的RGB-D场景解析 被引量:4
12
作者 王泽宇 吴艳霞 +1 位作者 张国印 布树辉 《电子学报》 EI CAS CSCD 北大核心 2018年第5期1253-1258,共6页
为了弥补RGB-D场景解析中卷积神经网络空间结构化学习能力的不足,本文基于深度学习提出空间结构化推理深度融合网络,内嵌的结构化推理层有机地结合条件随机场和空间结构化推理模型,该层能够较为全面而准确地学习物体所处三维空间的物体... 为了弥补RGB-D场景解析中卷积神经网络空间结构化学习能力的不足,本文基于深度学习提出空间结构化推理深度融合网络,内嵌的结构化推理层有机地结合条件随机场和空间结构化推理模型,该层能够较为全面而准确地学习物体所处三维空间的物体分布以及物体间的三维空间位置关系.在此基础上,网络的特征融合层巧妙地利用深度置信网络和改进的条件随机场,该层可以根据融合生成的物体综合语义信息和物体间语义相关性信息完成深度结构化学习.实验结果表明,在标准RGB-D数据集NYUDv2和SUNRGBD上,空间结构化推理深度融合网络分别实现最优的平均准确率53.8%和54.6%,从而有助于实现机器人任务规划、车辆自动驾驶等智能计算机视觉任务. 展开更多
关键词 RGBd场景解析 深度学习 卷积神经网络 条件随机场 空间结构化推理模型 深度置信网络 计算机视觉 机器人任务规划 车辆自动驾驶
在线阅读 下载PDF
基于注意力感知和语义感知的RGB-D室内图像语义分割算法 被引量:20
13
作者 段立娟 孙启超 +2 位作者 乔元华 陈军成 崔国勤 《计算机学报》 EI CSCD 北大核心 2021年第2期275-291,共17页
近年来,全卷积神经网络有效提升了语义分割任务的准确率.然而,由于室内环境的复杂性,室内场景语义分割仍然是一个具有挑战性的问题.随着深度传感器的出现,人们开始考虑利用深度信息提升语义分割效果.以往的研究大多简单地使用等权值的... 近年来,全卷积神经网络有效提升了语义分割任务的准确率.然而,由于室内环境的复杂性,室内场景语义分割仍然是一个具有挑战性的问题.随着深度传感器的出现,人们开始考虑利用深度信息提升语义分割效果.以往的研究大多简单地使用等权值的拼接或求和操作来融合RGB特征和深度特征,未能充分利用RGB特征与深度特征之间的互补信息.本文提出一种基于注意力感知和语义感知的网络模型ASNet(Attention-aware and Semantic-aware Network).通过引入注意力感知多模态融合模块和语义感知多模态融合模块,有效地融合多层次的RGB特征和深度特征.其中,在注意力感知多模态融合模块中,本文设计了一种跨模态注意力机制,RGB特征和深度特征利用互补信息相互指导和优化,从而提取富含空间位置信息的特征表示.另外,语义感知多模态融合模块通过整合语义相关的RGB特征通道和深度特征通道,建模多模态特征之间的语义依赖关系,提取更精确的语义特征表示.本文将这两个多模态融合模块整合到一个带有跳跃连接的双分支编码-解码网络模型中.同时,网络在训练时采用深层监督策略,在多个解码层上进行监督学习.在公开数据集上的实验结果表明,本文算法优于现有的RGB-D图像语义分割算法,在平均精度和平均交并比上分别比近期算法提高了1.9%和1.2%. 展开更多
关键词 RGB-d语义分割 卷积神经网络 多模态融合 注意力模型 深度学习
在线阅读 下载PDF
基于D-1DCNN的轴向柱塞泵故障诊断研究 被引量:7
14
作者 徐昌玲 黄家海 +4 位作者 兰媛 武兵 钮晨光 马晓宝 李斌 《机电工程》 CAS 北大核心 2021年第11期1494-1500,共7页
由于传统浅层模型对故障的表征能力有限,同时信号特征的提取又过分依靠专家经验,针对这些问题,提出了一种基于深度一维卷积神经网络(D-1DCNN)的轴向柱塞泵故障诊断方法。首先,采集了柱塞泵正常、松靴、滑靴磨损、中心弹簧失效、配流盘磨... 由于传统浅层模型对故障的表征能力有限,同时信号特征的提取又过分依靠专家经验,针对这些问题,提出了一种基于深度一维卷积神经网络(D-1DCNN)的轴向柱塞泵故障诊断方法。首先,采集了柱塞泵正常、松靴、滑靴磨损、中心弹簧失效、配流盘磨损5种状态下的振动信号,并将这些信号制作成样本集,加以标签标记,将样本集划分为训练样本与测试样本;然后,将样本输入到D-1DCNN中,进行了训练样本信号的特征提取工作,通过前向传播和反向传播方式得到了D-1DCNN的具体模型;再使用SoftMax分类器对测试样本进行了分类,并对网络模型中的参数进行了调整,得到了柱塞泵故障诊断的准确率值;最后,通过西储大学的轴承故障信号对此进行了仿真对比。研究结果表明:采用该方法对轴向柱塞泵故障进行诊断,其准确率可达到100%;使用D-1DCNN对柱塞泵进行故障诊断时,不需要人工设计或提取特征过程便可实现诊断过程的智能化;对于不同的故障诊断对象,该方法也具备良好的诊断效果,因而具有一定的普适性。 展开更多
关键词 轴向柱塞泵 故障诊断 深度一维卷积神经网络 深度学习 SoftMax
在线阅读 下载PDF
采用跳层卷积神经网络的RGB-D图像显著性检测 被引量:3
15
作者 陈曦涛 訾玲玲 张雪曼 《计算机工程与应用》 CSCD 北大核心 2022年第2期252-258,共7页
RGB-D图像显著性检测旨在提取三维图像中的显著目标。为解决当前显著性检测算法难以检测出光线干扰场景内的目标和低对比度的目标等问题,提出了基于跳层卷积神经网络的RGB-D图像显著性检测方法。利用VGG网络分离出RGB图像和深度图像的... RGB-D图像显著性检测旨在提取三维图像中的显著目标。为解决当前显著性检测算法难以检测出光线干扰场景内的目标和低对比度的目标等问题,提出了基于跳层卷积神经网络的RGB-D图像显著性检测方法。利用VGG网络分离出RGB图像和深度图像的浅层与深层特征,而后进行特征提取;以跳层结构为基础连接提取到的特征,实现融合深度、颜色、高级语义和细节信息的目标,同时生成侧输出;将侧输出进行融合,得到最佳的显著性检测图。实验结果表明,相比于深度监督显著性检测和渐进式互补感知融合显著性检测方法,在F值指标上分别提高了0.095 3和0.060 6,在平均绝对误差指标上降低了0.026 7和0.058 1。 展开更多
关键词 显著性检测 卷积神经网络 跳层结构 深度学习 RGB-d
在线阅读 下载PDF
基于张量分解融合RGB-D图像的物体识别 被引量:1
16
作者 余霆嵩 文元美 凌永权 《计算机工程与应用》 CSCD 北大核心 2019年第2期174-178,共5页
为了充分利用RGB-D图像的深度图像信息,提出了基于张量分解的物体识别方法。首先将RGB-D图像构造成一个四阶张量,然后将该四阶张量分解为一个核心张量和四个因子矩阵,再利用相应的因子矩阵将原张量进行投影,获得融合后的RGB-D数据,最后... 为了充分利用RGB-D图像的深度图像信息,提出了基于张量分解的物体识别方法。首先将RGB-D图像构造成一个四阶张量,然后将该四阶张量分解为一个核心张量和四个因子矩阵,再利用相应的因子矩阵将原张量进行投影,获得融合后的RGB-D数据,最后输入到卷积神经网络中进行识别。RGB-D数据集中三组相似物体的识别结果表明,利用张量分解融合RGB-D图像的物体识别准确率高于未采用张量分解的物体识别准确率,并且单一错分实例的准确率最高可提升99%。 展开更多
关键词 RGB-d图像融合 卷积神经网络 张量分解 Tucker分解 物体识别
在线阅读 下载PDF
基于多模态自适应卷积的RGB-D图像语义分割 被引量:1
17
作者 孙启超 恩擎 +1 位作者 段立娟 乔元华 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2022年第8期1272-1282,共11页
随着深度传感器的出现,很多研究开始利用颜色和深度信息解决语义分割问题.现有方法未能充分利用颜色特征和深度特征的互补信息,并且通常利用固定权重的卷积核提取多尺度特征,易造成参数量冗余且无法进行在线自适应.为了解决上述问题,提... 随着深度传感器的出现,很多研究开始利用颜色和深度信息解决语义分割问题.现有方法未能充分利用颜色特征和深度特征的互补信息,并且通常利用固定权重的卷积核提取多尺度特征,易造成参数量冗余且无法进行在线自适应.为了解决上述问题,提出了一种基于多模态自适应卷积的RGB-D图像语义分割方法,通过引入轻量级的多模态自适应卷积生成模块,动态地生成多尺度自适应卷积核,将多模态特征的上下文互补信息嵌入卷积滤波器中,在卷积过程中充分利用了图像的内在信息,实现高效融合多模态颜色特征和深度特征.相比于传统的卷积方法和多尺度特征提取方法,文中方法有着更高的计算效率和更好的分割效果.在公开数据集SUNRGB-D和NYUDepthv2上的结果表明,文中方法的像素精准度、平均像素精度和交并比分别达到了82.5%,62.0%,50.6%和77.1%,64.2%,50.8%,均优于对比的RGB-D语义分割方法. 展开更多
关键词 RGB-d语义分割 多模态融合 卷积神经网络 深度学习
在线阅读 下载PDF
基于结构光和深度神经网络的3维面形重建 被引量:1
18
作者 代金科 郑素珍 苏娟 《激光技术》 CAS CSCD 北大核心 2023年第6期831-840,共10页
为了提高基于结构光法的3维重建精度,采用机器学习中的回归模型对物体进行了3维形貌测量,通过以单目式获取对象高度点不同方向的光强信息簇样本,将其作为回归模型的训练集,在训练好回归模型后,直接建立起条纹图案的光强信息分布与对象... 为了提高基于结构光法的3维重建精度,采用机器学习中的回归模型对物体进行了3维形貌测量,通过以单目式获取对象高度点不同方向的光强信息簇样本,将其作为回归模型的训练集,在训练好回归模型后,直接建立起条纹图案的光强信息分布与对象高度之间的映射函数关系,完成对目标的3维测量;将调制条纹光数值信息以特征形式导入回归模型,获得端到端高度信息,验证了机器学习的神经网络回归模型在3维面形重建上的可行性。结果表明,该模型即使在投影特征模糊或噪音较大的情况也能较精确地重建3维面形,平均重建误差为1.40×10^(-4)mm,优于一般面形重建方法的数据。该研究为物体在强干扰条件下的单目式高精度3维面形重建提供了参考,简化了繁琐的计算过程和测量过程,提高了测量精度。 展开更多
关键词 信息光学 高精度3维面形重建 深度神经网络 结构光 单目式 形变条纹
在线阅读 下载PDF
CNN和D-S证据理论相结合的齿轮箱复合故障诊断研究 被引量:7
19
作者 张立智 井陆阳 +1 位作者 徐卫晓 谭继文 《机械科学与技术》 CSCD 北大核心 2019年第10期1582-1588,共7页
针对齿轮箱复合故障诊断问题,将深度卷积模型(CNN)和D-S证据理论相结合,对多传感器信息进行融合。首先,利用深度卷积模型对多个传感器信息进行自适应特征提取,经softmax进行初步分类。其次,将深度卷积模型的输出结果作为D-S证据理论的输... 针对齿轮箱复合故障诊断问题,将深度卷积模型(CNN)和D-S证据理论相结合,对多传感器信息进行融合。首先,利用深度卷积模型对多个传感器信息进行自适应特征提取,经softmax进行初步分类。其次,将深度卷积模型的输出结果作为D-S证据理论的输入,计算出基本概率分配,根据Dempster合成法则进行决策融合。为验证此方法对齿轮箱复合故障诊断的有效性,使用BP神经网络与D-S证据理论模型作为对比,并对自适应提取的特征与人工特征进行了主成分分析(PCA)。实验结果表明,利用该方法对齿轮箱复合故障进行实验诊断,准确率达到84.58%。相比单一传感器,正确率提高了7.91%;相比BP神经网络与D-S证据理论模型,正确率提高了6.18%,验证了此方法的有效性。 展开更多
关键词 齿轮箱 故障诊断 深度卷积网络 d-S证据理论 神经网络 信息融合
在线阅读 下载PDF
利用卷积神经网络对GF-3输电塔的检测与分类 被引量:4
20
作者 孙震笙 柳鹏 +2 位作者 余涛 杨健 米晓飞 《遥感信息》 CSCD 北大核心 2019年第5期88-97,共10页
高压输电塔廊道的快速、大范围监测能力对于国家能源安全战略至关重要。合成孔径雷达遥感技术以其全天时、全天候、穿透能力强等众多优势能够为区域电力基础设施监测提供稳定数据源。但由于复杂的成像机理和大量相干斑噪声的影响,SAR数... 高压输电塔廊道的快速、大范围监测能力对于国家能源安全战略至关重要。合成孔径雷达遥感技术以其全天时、全天候、穿透能力强等众多优势能够为区域电力基础设施监测提供稳定数据源。但由于复杂的成像机理和大量相干斑噪声的影响,SAR数据的快速智能解译存在一定的困难。为此,提出一个基于深度卷积神经网络的输电塔快速识别分类算法框架。利用我国首颗C频段多极化合成孔径雷达高分三号数据,结合目标检测网络自动标注构建RAD-GFEP输电塔数据集,然后采用基于卷积神经网络的分类算法对该样本集进行分类测试。结果表明,基于深度卷积神经网络的分类算法能够对复杂背景场下SAR微小目标精准识别。在输电塔数据集RAD-GFEP上分类的总体精度达到了98.21%,混淆矩阵的Kappa系数值为0.9729,该结果远远优于传统的视觉算法。研究也表明了国产星载SAR较好的成像能力和利用其进行广域输电塔发现、识别和分类的可行性,在电力基础设施规划、建设、维护和灾后评估等方面展现出了巨大的应用前景。 展开更多
关键词 深度卷积神经网络 目标识别 输电塔 合成孔径雷达 高分三号
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部