The dissociation between data management and data ownership makes it difficult to protect data security and privacy in cloud storage systems.Traditional encryption technologies are not suitable for data protection in ...The dissociation between data management and data ownership makes it difficult to protect data security and privacy in cloud storage systems.Traditional encryption technologies are not suitable for data protection in cloud storage systems.A novel multi-authority proxy re-encryption mechanism based on ciphertext-policy attribute-based encryption(MPRE-CPABE) is proposed for cloud storage systems.MPRE-CPABE requires data owner to split each file into two blocks,one big block and one small block.The small block is used to encrypt the big one as the private key,and then the encrypted big block will be uploaded to the cloud storage system.Even if the uploaded big block of file is stolen,illegal users cannot get the complete information of the file easily.Ciphertext-policy attribute-based encryption(CPABE)is always criticized for its heavy overload and insecure issues when distributing keys or revoking user's access right.MPRE-CPABE applies CPABE to the multi-authority cloud storage system,and solves the above issues.The weighted access structure(WAS) is proposed to support a variety of fine-grained threshold access control policy in multi-authority environments,and reduce the computational cost of key distribution.Meanwhile,MPRE-CPABE uses proxy re-encryption to reduce the computational cost of access revocation.Experiments are implemented on platforms of Ubuntu and CloudSim.Experimental results show that MPRE-CPABE can greatly reduce the computational cost of the generation of key components and the revocation of user's access right.MPRE-CPABE is also proved secure under the security model of decisional bilinear Diffie-Hellman(DBDH).展开更多
The cloud storage service cannot be completely trusted because of the separation of data management and ownership, leading to the difficulty of data privacy protection. In order to protect the privacy of data on untru...The cloud storage service cannot be completely trusted because of the separation of data management and ownership, leading to the difficulty of data privacy protection. In order to protect the privacy of data on untrusted servers of cloud storage, a novel multi-authority access control scheme without a trustworthy central authority has been proposed based on CP-ABE for cloud storage systems, called non-centered multi-authority proxy re-encryption based on the cipher-text policy attribute-based encryption(NC-MACPABE). NC-MACPABE optimizes the weighted access structure(WAS) allowing different levels of operation on the same file in cloud storage system. The concept of identity dyeing is introduced to improve the users' information privacy further. The re-encryption algorithm is improved in the scheme so that the data owner can revoke user's access right in a more flexible way. The scheme is proved to be secure. And the experimental results also show that removing the central authority can resolve the existing performance bottleneck in the multi-authority architecture with a central authority, which significantly improves user experience when a large number of users apply for accesses to the cloud storage system at the same time.展开更多
电子病历(electronic medical records,EMR)能够安全高效地跨域共享,给患者跨域就诊带来极大便利,但传统集中式的电子病历管理方式存在隐私泄露、单点故障和病历确权等安全问题,不利于患者跨域就诊.本文提出了基于联盟链和代理重加密的...电子病历(electronic medical records,EMR)能够安全高效地跨域共享,给患者跨域就诊带来极大便利,但传统集中式的电子病历管理方式存在隐私泄露、单点故障和病历确权等安全问题,不利于患者跨域就诊.本文提出了基于联盟链和代理重加密的电子病历跨域共享方案,利用区块链和星际文件系统规避了集中式管理带来的单点故障问题.患者通过代理重加密算法授权跨域数据用户解密病历密文,确保只有被授权的用户才能访问文件,实现不同信任域间的密文转换.该方案能抵抗多种类型攻击且计算成本较低.展开更多
基金supported by the National Natural Science Foundation of China(6120200461472192)+1 种基金the Special Fund for Fast Sharing of Science Paper in Net Era by CSTD(2013116)the Natural Science Fund of Higher Education of Jiangsu Province(14KJB520014)
文摘The dissociation between data management and data ownership makes it difficult to protect data security and privacy in cloud storage systems.Traditional encryption technologies are not suitable for data protection in cloud storage systems.A novel multi-authority proxy re-encryption mechanism based on ciphertext-policy attribute-based encryption(MPRE-CPABE) is proposed for cloud storage systems.MPRE-CPABE requires data owner to split each file into two blocks,one big block and one small block.The small block is used to encrypt the big one as the private key,and then the encrypted big block will be uploaded to the cloud storage system.Even if the uploaded big block of file is stolen,illegal users cannot get the complete information of the file easily.Ciphertext-policy attribute-based encryption(CPABE)is always criticized for its heavy overload and insecure issues when distributing keys or revoking user's access right.MPRE-CPABE applies CPABE to the multi-authority cloud storage system,and solves the above issues.The weighted access structure(WAS) is proposed to support a variety of fine-grained threshold access control policy in multi-authority environments,and reduce the computational cost of key distribution.Meanwhile,MPRE-CPABE uses proxy re-encryption to reduce the computational cost of access revocation.Experiments are implemented on platforms of Ubuntu and CloudSim.Experimental results show that MPRE-CPABE can greatly reduce the computational cost of the generation of key components and the revocation of user's access right.MPRE-CPABE is also proved secure under the security model of decisional bilinear Diffie-Hellman(DBDH).
基金Projects(61472192,61202004)supported by the National Natural Science Foundation of ChinaProject(14KJB520014)supported by the Natural Science Fund of Higher Education of Jiangsu Province,China
文摘The cloud storage service cannot be completely trusted because of the separation of data management and ownership, leading to the difficulty of data privacy protection. In order to protect the privacy of data on untrusted servers of cloud storage, a novel multi-authority access control scheme without a trustworthy central authority has been proposed based on CP-ABE for cloud storage systems, called non-centered multi-authority proxy re-encryption based on the cipher-text policy attribute-based encryption(NC-MACPABE). NC-MACPABE optimizes the weighted access structure(WAS) allowing different levels of operation on the same file in cloud storage system. The concept of identity dyeing is introduced to improve the users' information privacy further. The re-encryption algorithm is improved in the scheme so that the data owner can revoke user's access right in a more flexible way. The scheme is proved to be secure. And the experimental results also show that removing the central authority can resolve the existing performance bottleneck in the multi-authority architecture with a central authority, which significantly improves user experience when a large number of users apply for accesses to the cloud storage system at the same time.
文摘电子病历(electronic medical records,EMR)能够安全高效地跨域共享,给患者跨域就诊带来极大便利,但传统集中式的电子病历管理方式存在隐私泄露、单点故障和病历确权等安全问题,不利于患者跨域就诊.本文提出了基于联盟链和代理重加密的电子病历跨域共享方案,利用区块链和星际文件系统规避了集中式管理带来的单点故障问题.患者通过代理重加密算法授权跨域数据用户解密病历密文,确保只有被授权的用户才能访问文件,实现不同信任域间的密文转换.该方案能抵抗多种类型攻击且计算成本较低.