期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Protective mechanism of quercetin compounds against acrylamide-induced hepatotoxicity
1
作者 Linzi Li Xueying Lei +6 位作者 Lin Chen Ya Ma Jun Luo Xuebo Liu Xinglian Xu Guanghong Zhou Xianchao Feng 《Food Science and Human Wellness》 SCIE CSCD 2024年第1期225-240,共16页
Quercetin compounds have antioxidant,anti-inflammatory and anticancer pharmacological functions.Longterm exposure to acrylamide(AA)can cause liver injury and endanger human health.However,whether quercetin compounds c... Quercetin compounds have antioxidant,anti-inflammatory and anticancer pharmacological functions.Longterm exposure to acrylamide(AA)can cause liver injury and endanger human health.However,whether quercetin compounds can attenuate AA-induced liver injury and the specific mechanism are not clear.Here,we studied the mechanism and structure-activity relationship of quercetin compounds in reducing AA-induced hepatotoxicity in vivo and in vitro.In vivo studies found that quercetin-like compounds protect against AAinduced liver injury by reducing oxidative stress levels,activating the Akt/m TOR signaling pathway to attenuate autophagy,and improving mitochondrial apoptosis and endoplasmic reticulum stress-mediated apoptosis.In vitro studies found that quercetin compounds protected Hep G2 cells from AA by attenuating the activation of AA-induced autophagy,lowering reactive oxygen species(ROS)levels by exerting antioxidant effects and thus attenuating oxidative stress,increasing mitochondrial membrane potential(MMP),and improving apoptosis-related proteins,thus attenuating AA-induced apoptosis.Furthermore,the conformational differences between quercetin compounds correlated with their protective capacity against AA-induced hepatotoxicity,with quercetin showing the best protective capacity due to its strongest antioxidant activity.In conclusion,quercetin compounds can protect against AA-induced liver injury through multiple pathways of oxidative stress,autophagy and apoptosis,and their protective capacity correlates with antioxidant activity. 展开更多
关键词 Quercetin compounds ACRYLAMIDE protection mechanism Oxidative stress Antioxidant activity
在线阅读 下载PDF
A surface engineering strategy for the stabilization of zinc metal anodes with montmorillonite layers toward long-life rechargeable aqueous zinc ion batteries
2
作者 Wenbo Wang Ruifeng Xu +9 位作者 Xu Zhang Peiyu Wang Bao Yang Bingjun Yang Juan Yang Kailimai Su Pengjun Ma Yanan Deng Xianfeng Fan Wanjun Chen 《Journal of Energy Chemistry》 2025年第1期94-105,共12页
Rechargeable aqueous zinc-ion batteries(AZIBs)exhibit appreciable potential in the domain of electrochemical energy storage.However,there are serious challenges for AZIBs,for instance zinc dendrite growth,hydrogen evo... Rechargeable aqueous zinc-ion batteries(AZIBs)exhibit appreciable potential in the domain of electrochemical energy storage.However,there are serious challenges for AZIBs,for instance zinc dendrite growth,hydrogen evolution reaction(HER),and corrosion side reactions.Herein,we propose a surface engineering modification strategy for coating the montmorillonite(MMT)layer onto the surface of the Zn anode to tackle these issues,thereby achieving high cycling stability for rechargeable AZIBs.The results reveal that the MMT layer on the surface of the Zn anode is able to provide ordered zincophilic channels for zinc ions migration,facilitating the reaction kinetics of zinc ions.Density functional theory(DFT)calculations and water contact angle(CA)tests prove that MMT@Zn anode exhibits superior adsorption capacity for Zn^(2+)and better hydrophobicity than the bare Zn anode,thereby achieving excellent cycling stability.Moreover,the MMT@Zn||MMT@Zn symmetric cell holds the stable cycling over 5600 h at 0.5 mA cm^(-2)and 0.125 m A h cm^(-2),even exceeding 1800 h long cycling under harsh conditions of 5 m A cm^(-2)and 1.25 m A h cm^(-2).The MMT@Zn||V_(2)O_(5)full cell reaches over 3000 cycles at 2 A g^(-1)with excellent rate capability.Therefore,this surface engineering modification strategy for enhancing the electrochemical performance of AZIBs represents a promising application. 展开更多
关键词 Surface engineering strategy Montmorillonite layer protection mechanism of Zn anode Cycling stability Aqueous zincionbatteries
在线阅读 下载PDF
Protective performance of shear stiffening gel-modified foam against ballistic impact:Experimental and numerical study
3
作者 Huan Tu Haowei Yang +9 位作者 Pengzhao Xu Zhe Yang Fan Tang Cheng Dong Yuchao Chen Lei Ren Wenjian Cao Chenguang Huang Yacong Guo Yanpeng Wei 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期510-520,共11页
As one of the most widely used personal protective equipment(PPE),body armors play an important role in protecting the human body from the high-velocity impact of bullets or projectiles.The body torso and critical org... As one of the most widely used personal protective equipment(PPE),body armors play an important role in protecting the human body from the high-velocity impact of bullets or projectiles.The body torso and critical organs of the wear may suffer severe behind-armor blunt trauma(BABT)even though the impactor is stopped by the body armor.A type of novel composite material through incorporating shear stiffening gel(STG)into ethylene-vinyl acetate(EVA)foam is developed and used as buffer layers to reduce BABT.In this paper,the protective performance of body armors composed of fabric bulletproof layers and a buffer layer made of foam material is investigated both experimentally and numerically.The effectiveness of STG-modified EVA in damage relief is verified by ballistic tests.In parallel with the experimental study,numerical simulations are conducted by LS-DYNA®to investigate the dynamic response of each component and capture the key mechanical parameters,which are hardly obtained from field tests.To fully describe the material behavior under the transient impact,the selected constitutive models take the failure and strain rate effect into consideration.A good agreement between the experimental observations and numerical results is achieved to prove the validity of the modelling method.The tests and simulations show that the impact-induced deformation on the human body is significantly reduced by using STG-modified EVA as the buffering material.The improvement of protective performance is attributed to better dynamic properties and more outstanding energy absorption capability of the composite foam. 展开更多
关键词 Ballistic behavior Composite foam Shear stiffening gel Finite element analysis Protective mechanism
在线阅读 下载PDF
Review of bumper materials for spacecraft shield against orbital debris hypervelocity impact
4
作者 Siyuan Ren Pinliang Zhang +6 位作者 Qiang Wu Qingming Zhang Zizheng Gong Guangming Song Renrong Long Liangfei Gong Mingze Wu 《Defence Technology(防务技术)》 2025年第3期137-177,共41页
It is widely known that the hypervelocity impact of orbital debris can cause serious damage to spacecraft,and enhancing the impact resistance is the great concern of spacecraft shield design.This paper provides a comp... It is widely known that the hypervelocity impact of orbital debris can cause serious damage to spacecraft,and enhancing the impact resistance is the great concern of spacecraft shield design.This paper provides a comprehensive overview of advances in the development of bumper materials for spacecraft shield applications.In particular,the protective mechanism and process of the bumper using different materials against hypervelocity impact are reviewed and discussed.The advantages and disadvantages of each material used in shield were discussed,and the performance under hypervelocity impact was given according to the specific configuration.This review provides the useful reference and basis for researchers and engineers to create bumper materials for spacecraft shield applications,and the contemporary challenges and future directions for bumper materials for spacecraft shield were presented. 展开更多
关键词 Orbital debris Spacecraft shield Hypervelocity impact Bumper materials Protective mechanism
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部