Background:Globally,despite prostate cancer(PCa)representing second most prevalent malignancy in male,the precise molecular mechanisms implicated in its pathogenesis remain unclear.Consequently,elucidating the key mol...Background:Globally,despite prostate cancer(PCa)representing second most prevalent malignancy in male,the precise molecular mechanisms implicated in its pathogenesis remain unclear.Consequently,elucidating the key molecular regulators that govern disease progression could substantially contribute to the establishment of novel therapeutic strategies,ultimately advancing the management of PCa.Methods:A total of 49 PCa tissues and 43 adjacent normal tissues were collected from January 2017 to December 2021 at Zhongnan Hospital of Wuhan University.The advanced transcriptomic methodologies were employed to identify differentially expressed mRNAs in PCa.The expression of aspartoacylase(ASPA)in PCa was thoroughly evaluated using quantitative real-time PCR and Western blotting techniques.To elucidate the inhibitory role of ASPA in PCa cell proliferation and metastasis,a comprehensive set of in vitro and in vivo assays were conducted,including orthotopic and tumor-bearing mouse models(n=8 for each group).A combination of experimental approaches,such as Western blotting,luciferase assays,immunoprecipitation assays,mass spectrometry,glutathione S-transferase pulldown experiments,and rescue studies,were employed to investigate the underlying molecular mechanisms of ASPA's action in PCa.The Student‘s t-test was employed to assess the statistical significance between two distinct groups,while one-way analysis of variance was utilized for comparisons involving more than two groups.A two-sided P<0.05 was deemed to indicate statistical significance.Results:ASPA was identified as a novel inhibitor of PCa progression.The expression of ASPA was found to be significantly down-regulated in PCa tissue samples,and its decreased expression was independently associated with patients’prognosis(HR=0.60,95%CI 0.40–0.92,P=0.018).Our experiments demonstrated that modulation of ASPA activity,either through gain-or loss-of-function,led to the suppression or enhancement of PCa cell proliferation,migration,and invasion,respectively.The inhibitory role of ASPA in PCa was further confirmed using orthotopic and tumor-bearing mouse models.Mechanistically,ASPA was shown to directly interact with the LYN and inhibit the phosphorylation of LYN as well as its downstream targets,JNK1/2 and C-Jun,in both PCa cells and mouse models,in an enzyme-independent manner.Importantly,the inhibition of LYN activation by bafetinib abrogated the promoting effect of ASPA knockdown on PCa progression in both in vitro and in vivo models.Moreover,we observed an inverse relationship between ASPA expression and LYN activity in clinical PCa samples,suggesting a potential regulatory role of ASPA in modulating LYN signaling.Conclusions:Our findings provide novel insights into the tumor-suppressive function of ASPA in PCa and highlight its potential as a prognostic biomarker and therapeutic target for the management of this malignancy.展开更多
Background Cell metabolism plays a pivotal role in tumor progression,and targeting cancer metabolism might effectively kill cancer cells.We aimed to investigate the role of hexokinases in prostate cancer(PCa)and ident...Background Cell metabolism plays a pivotal role in tumor progression,and targeting cancer metabolism might effectively kill cancer cells.We aimed to investigate the role of hexokinases in prostate cancer(PCa)and identify a crucial target for PCa treatment.Methods The Cancer Genome Atlas(TCGA)database,online tools and clinical samples were used to assess the expression and prognostic role of ADP-dependent glucokinase(ADPGK)in PCa.The effect of ADPGK expression on PCa cell malignant phenotypes was validated in vitro and in vivo.Quantitative proteomics,metabolomics,and extracellular acidification rate(ECAR)and oxygen consumption rate(OCR)tests were performed to evaluate the impact of ADPGK on PCa metabolism.The underlying mechanisms were explored through ADPGK overexpression and knockdown,co-immunoprecipitation(Co-IP),ECAR analysis and cell counting kit-8(CCK-8)assays.Results ADPGK was the only glucokinase that was both upregulated and predicted worse overall survival(OS)in prostate adenocarcinoma(PRAD).Clinical sample analysis demonstrated that ADPGK was markedly upregulated in PCa tissues vs.non-PCa tissues.High ADPGK expression indicates worse survival outcomes,and ADPGK serves as an independent factor of biochemical recurrence.In vitro and in vivo experiments showed that ADPGK overexpression promoted PCa cell proliferation and migration,and ADPGK inhibition suppressed malignant phenotypes.Metabolomics,proteomics,and ECAR and OCR tests revealed that ADPGK significantly accelerated glycolysis in PCa.Mechanistically,ADPGK binds aldolase C(ALDOC)to promote glycolysis via AMP-activated protein kinase(AMPK)phosphorylation.ALDOC was positively correlated with ADPGK,and high ALDOC expression was associated with worse survival outcomes in PCa.Conclusions In summary,ADPGK is a driving factor in PCa progression,and its high expression contributes to a poor prognosis in PCa patients.ADPGK accelerates PCa glycolysis and progression by activating ALDOC-AMPK signaling,suggesting that ADPGK might be an effective target and marker for PCa treatment and prognosis evaluation.展开更多
The present study aimed to explore the potential of artificial intelligence(AI)methodology based on magnetic resonance(MR)images to aid in the management of prostate cancer(PCa).To this end,we reviewed and summarized ...The present study aimed to explore the potential of artificial intelligence(AI)methodology based on magnetic resonance(MR)images to aid in the management of prostate cancer(PCa).To this end,we reviewed and summarized the studies comparing the diagnostic and predictive performance for PCa between AI and common clinical assessment methods based on MR images and/or clinical characteristics,thereby investigating whether AI methods are generally superior to common clinical assessment methods for the diagnosis and prediction fields of PCa.First,we found that,in the included studies of the present study,AI methods were generally equal to or better than the clinical assessment methods for the risk assessment of PCa,such as risk stratification of prostate lesions and the prediction of therapeutic outcomes or PCa progression.In particular,for the diagnosis of clinically significant PCa,the AI methods achieved a higher summary receiver operator characteristic curve(SROC-AUC)than that of the clinical assessment methods(0.87 vs.0.82).For the prediction of adverse pathology,the AI methods also achieved a higher SROC-AUC than that of the clinical assessment methods(0.86 vs.0.75).Second,as revealed by the radiomics quality score(RQS),the studies included in the present study presented a relatively high total average RQS of 15.2(11.0–20.0).Further,the scores of the individual RQS elements implied that the AI models in these studies were constructed with relatively perfect and standard radiomics processes,but the exact generalizability and clinical practicality of the AI models should be further validated using higher levels of evidence,such as prospective studies and open-testing datasets.展开更多
Objective To investigate the expression of programmed cell death 5 (PDCD5) in tissues of normal human prostate (NP), benign prostatic hyperplasia (BPH), and prostate cancer (PCa) in order to assess the clinica...Objective To investigate the expression of programmed cell death 5 (PDCD5) in tissues of normal human prostate (NP), benign prostatic hyperplasia (BPH), and prostate cancer (PCa) in order to assess the clinical role of PDCD5 in PCa. Methods PDCD5 expression was determined by EnVision immunohistochemical staining in forma-lin-fixed and paraffin-embedded specimens obtained from 12 subjects with NP, 22 with BPH, and 22 with PCa. In addition, PCa cases were classified as low/middle-risk (Gleason sumS7) and high-risk (Gleason sum〉7) on the basis of Gleason grade. Positive expression rates and intensity of PDCD5 protein were observed under light microscope and analyzed with computer imaging technique. Expression of PDCD5 was compared among different prostatic tissues. Results The expression of PDCD5 was significantly lower in tissue of PCa than in tissues of NP and BPH (P〈0.01). However, there was no significant difference in PDCD5 expression between tissues of NP and BPH. In addition, the expression of PDCD5 was further downregulated with the increase of Gleason sum in PCa. Conclusions By downregulating apoptosis, low PDCD5 expression may play an important role in the occurrence and development of PCa. PDCD5 is supposed to have a potential clinical value to be a new predictor of progression and target of gene therapy in PCa.展开更多
Carbon ion radiotherapy has the advantages of better therapeutic effect and fewer side effects compared with those of X-rays in many kinds of tumors,including prostate cancer,and thus is an attractive treatment approa...Carbon ion radiotherapy has the advantages of better therapeutic effect and fewer side effects compared with those of X-rays in many kinds of tumors,including prostate cancer,and thus is an attractive treatment approach for prostate cancer.However,the biological effects and underlying mechanisms of carbon ion irradiation in prostate cancer are not yet fully understood.Therefore,this study systematically compared the effects of carbon ion irradiation with those of X-ray irradiation on DNA damage response and found that carbon ion irradiation was more effective than X-ray irradiation.Carbon ion irradiation can induce a high level of DNA double-strand break damage,reflected by the number of y-H2 A histone family member X foci,as well as by the foci lasting time and size.Moreover,carbon ion irradiation exhibited strong and long-lasting inhibitory effect on cell survival capability,induced prolonged cell cycle arrest,and increased apoptosis in PC-3 cells.As an underlying mechanism,we speculated that carbon ion irradiation-induced DNA damage evokes cell cycle arrest and apoptosis via the pRb/E2 F1/c-Myc signaling pathway to enhance the radiosensitivity of p53-deficient prostate cancer PC-3 cells.Collectively,the present study suggests that carbon ion irradiation is more efficient than X-ray irradiation and may help to understand the effects of different radiation qualities on the survival potential of p53-deficient prostate cancer cells.展开更多
Objective: To investigate the inhibitory effect of apogossypolone (ApoG2) on prostate cancer cell line PC-3 in vivo, and explore its mechanism. Methods: The models of transplantation tumors in Balb/c nu/nu mice were e...Objective: To investigate the inhibitory effect of apogossypolone (ApoG2) on prostate cancer cell line PC-3 in vivo, and explore its mechanism. Methods: The models of transplantation tumors in Balb/c nu/nu mice were established via subcutaneous injection of PC-3 cells and the tumor-transplanted mice were divided into 4 groups: control group and three ApoG2 treatment groups, with 10 mice in each group. Volumes of the tumor were estimated every 2 d and the morphology of tumor tissues was observed. Immunohistochemistry was employed to observe the expression of Bcl-2, PCNA, CD31, caspase-3 and caspase-8 in tumor tissues. Results: ApoG2 (2.5 mg/kg-10 mg/kg) given intraperitoneally once a day can obviously inhibit the growth of subcutaneous prostatic carcinoma implant. The tumor volume decreased obviously when the treatment dosage was bigger than 5.0 mg/kg (P<0.01). Meanwhile, ApoG2 decreased the expression of PCNA and CD31, and enhanced the expression of caspases-3, caspase-8 in tumor tissues. Conclusion: ApoG2 exert an inhibitory effect on prostatic carcinoma possibly by inducing apoptosis and inhibiting tumor angiogenesis.展开更多
Objective To quantitatively evaluate the metabolic changes of benign prostatic hyperplasia(BPH) and prostate cancer in the transitional zone using magnetic resonance spectroscopic imaging(MRSI),and to analyze the char...Objective To quantitatively evaluate the metabolic changes of benign prostatic hyperplasia(BPH) and prostate cancer in the transitional zone using magnetic resonance spectroscopic imaging(MRSI),and to analyze the characteristics and differences of the spectra in this zonal area.Methods Eighteen patients with prostate cancer in the transitional zone underwent magnetic resonance imaging(MRI)/MRSI examinations.The(Choline+Creatine)/Citrate(CC/Ci) ratio and the Choline/Creatine(Cho/Cr) ratio were evaluated in each voxel with cancer or BPH confirmed by pathological results.Discriminant analysis was used to determine the power of the two ratios in differentiation between cancer and BPH.Results The CC/Ci ratio and Cho/Cr ratio for cancer voxels were significantly higher than those in the voxels with BPH in the transitional zone(CC/Ci:2.36±1.31 vs.0.85±0.29,P<0.01;Cho/Cr:4.14±1.79 vs.1.26±0.45,P<0.01).As for the discriminant function with the CC/Ci ratio and the Cho/Cr ratio,the specificity,sensitivity,and accuracy were 98.6%,85.7%,92.9% respectively for the differentiation between cancer and BPH.Conclusions The prostate cancer is characterized by higher CC/Ci ratio and Cho/Cr ratio compared to BPH in the transitional zone.Both CC/Ci ratio and Cho/Cr ratio have high specificity,sensitivity,and accuracy in their discriminative power between cancer and BPH in this zonal area.展开更多
Background:The burden of kidney,bladder,and prostate cancers has changed in recent decades.This study aims to investigate the global and regional burden of,and attributable risk factors for genitourinary cancers durin...Background:The burden of kidney,bladder,and prostate cancers has changed in recent decades.This study aims to investigate the global and regional burden of,and attributable risk factors for genitourinary cancers during the past 30 years.Methods:We extracted data of kidney,bladder,and prostate cancers from the Global Burden of Disease 2019 database,including incidence,mortality,disability-adjusted life-years(DALYs),and attributable risk factors from 1990 to 2019.Estimated annual percentage changes(EAPC)were calculated to assess the changes in age-standardized incidence rate,age-standardized mortality rate(ASMR),and age-standardized DALYs rate(ASDR).The associations between cancers burden and socio-demographic index(SDI)were also analyzed.Results:Compared with 1990,the global incident cases in 2019 were higher by 154.78%,123.34%,and 169.11%for kidney,bladder,and prostate cancers,respectively.During the 30-year study period,there was a downward trend in ASMR and ASDR for bladder cancer(EAPC=–0.68 and–0.83,respectively)and prostate cancer(EAPC=–0.75 and–0.71,respectively),but an upward trend for kidney cancer(EAPC=0.35 and 0.12,respectively).Regions and countries with higher SDI had higher incidence,mortality,and DALYs for all three types of cancers.The burden of bladder and prostate cancers was mainly distributed among older men,whereas the burden of kidney cancer increased among middle-aged men.Smoking related mortality and DALYs decreased,but high body mass index(BMI)and high fasting plasma glucose(FPG)related mortality and DALYs increased among kidney,bladder,and prostate cancers during the study period.Conclusions:Kidney,bladder,and prostate cancers remain major global public health challenges,but with distinct trend for different disease entity across different regions and socioeconomic status.More proactive intervention strategies,at both the administrative and academic levels,based on the dynamic changes,are needed.展开更多
Objective To build a prostate cancer(PCa) risk prediction model based on common clinical indicators to provide a theoretical basis for the diagnosis and treatment of PCa and to evaluate the value of artificial intelli...Objective To build a prostate cancer(PCa) risk prediction model based on common clinical indicators to provide a theoretical basis for the diagnosis and treatment of PCa and to evaluate the value of artificial intelligence(AI) technology under healthcare data platforms.Methods After preprocessing of the data from Population Health Data Archive,smuothly clipped absolute deviation(SCAD) was used to select features.Random forest(RF),support vector machine(SVM),back propagation neural network(BP),and convolutional neural network(CNN) were used to predict the risk of PCa,among which BP and CNN were used on the enhanced data by SMOTE.The performances of models were compared using area under the curve(AUC) of the receiving operating characteristic curve.After the optimal model was selected,we used the Shiny to develop an online calculator for PCa risk prediction based on predictive indicators.Results Inorganic phosphorus,triglycerides,and calcium were closely related to PCa in addition to the volume of fragmented tissue and free prostate-specific antigen(PSA).Among the four models,RF had the best performance in predicting PCa(accuracy:96.80%;AUC:0.975,95% CI:0.964-0.986).Followed by BP(accuracy:85.36%;AUC:0.892,95% CI:0.849-0.934) and SVM(accuracy:82.67%;AUC:0.824,95% CI:0.805-0.844).CNN performed worse(accuracy:72.37%;AUC:0.724,95% CI:0.670-0.779).An online platform for PCa risk prediction was developed based on the RF model and the predictive indicators.Conclusions This study revealed the application value of traditional machine learning and deep learning models in disease risk prediction under healthcare data platform,proposed new ideas for PCa risk prediction in patients suspected for PCa and had undergone core needle biopsy.Besides,the online calculation may enhance the practicability of AI prediction technology and facilitate medical diagnosis.展开更多
Objective: To investigate the antitumor activity of tumor lysate-pulsed dendritic cells vaccine in RM-1 prostate cancer mice model with the survival time of mice calculated and the tumor size measured in DC vaccine t...Objective: To investigate the antitumor activity of tumor lysate-pulsed dendritic cells vaccine in RM-1 prostate cancer mice model with the survival time of mice calculated and the tumor size measured in DC vaccine therapy. Methods: C57BL/6 mice were immunized on the dorsal flank by s.c. inoculation of Lysate-DC, ova-DC, and non-DC on day -7. On day 0, 2× 10^6cells of RM-1 tumor cells (H-2b) were injected s.c. in C57BL/6 mice pre-treated by s.c. inoculation of modified DCs, correspondingly. DTH assay was performed with modified DCs. In partial test, for the determination of which immune cells were required for antitumor activity, mice were immunodepleted of CD4, CDS, or natural killer (NK) NK1.1 cells with the corresponding monoclonal antibodies. The survival time of nude mice loaded with tumor cells was calculated and the size of tumor measured. Results: In RM-1 mice prostate cancer model, immunized with lysate-DC, compared with ova-DC and non-DC, the pre-infection vaccine resulted in 100% clearance of primary tumors, whereas on day 0 of injection vaccine cleared 40-60% of primary tumors. On day 0, C57BL/6 mice (H-2b) were immunized with Lysate-DC, compared with ova-DC and non-DC by caudal vein injection, then on day 15, RM-1 cells were inoculated. On day 30, average diameters of tumor in different groups of modified DC were 23.7±5.4 mm, 22.1±4.9 mm, 4.3±2.6 mm, respectively. Lysate-DC, compared with ova-DC and non-DC, can greatly depressed RM-1 tumor cell growth (P〈0.01). The mean survival time of C57BL/6 mice in Lysate-DC, ova-DC and non-DC groups were 15.8±2.6, 16.6±3.2, 39.0±5.6, respectively, and there was a significant difference in the mean survival time in lysate-DC group between ova-DC and non-DC group (P〈0.01). DTH test showed that lysate-DC could prime T lymphocyte and elicit tumor antigen specific immune response, and over 80% mice in groups of lysate-DC showed obvious swelling in their foot pad. This response was strengthened with repeating inoculation, whereas DTH response was not seen in control group. In vivo depletion of NK cells resulted in a 40-60% reduction in growth suppression within the primary tumor, and depletion of CD4^+ cells resulted in a 20% reduction in growth suppression. Conclusion: The minor lysate-pulsed dendritic cells vaccine could elicit antitumor activity in RM-1 loaded C57BL/6 mice, and prolong the duration of RM-1 loaded C57BL/6 mice. So DC-based immunotherapy with hormone-refractory prostate carcinoma yielded protective immunity, generated efficient cellular antitumor responses, thereby providing further preclinical support for feasible immunotherapy approaches for prostate cancer.展开更多
Objective:To explore the expression of nuclear receptor corepressor (NCoR) in androgen independence prostate cancer (AIPC) and its clinical significance. Methods:The expression of NCoR and androgen receptor (AR...Objective:To explore the expression of nuclear receptor corepressor (NCoR) in androgen independence prostate cancer (AIPC) and its clinical significance. Methods:The expression of NCoR and androgen receptor (AR) in prostatie tissues, from 15 cases with AIPC, 20 cases with androgen dependence prostate cancer (ADPC) and 20 cases with benign prostatic hyperplasia (BPH), was detected by immunohistoehemistry respectively. Results:The expression of NCoR was observed mainly in the nucleus and slightly in the nucleus. The positive cell percentage of NCoR in AIPC was significantly lower than that in ADPC and BPH (P〈0. 01). The NCoR expression was significantly lower in low differentiation prostate cancer (Pca) than that in high differentiation Pca (P〈0. 05). The rate of NCoR expression was significantly higher in low stage Pca than that in high stage Pca (P〈0. 05). AR, expressing in the nucleus, was found to be negative in one case of AIPC, while was strongly expressed in other cases of AIPC, and all eases of ADPC and BPH. Conclusion: The transition to AIPC of Pea may be correlated with the decrease of NCoR protein.展开更多
Objective: To study the relationship between the polymorphic (CAG)n micro-satellite of human androgen receptor (hAR) gene and prostate cancer (PCa). Methods: The number of (CAG)n repeats in 107 normal males were measu...Objective: To study the relationship between the polymorphic (CAG)n micro-satellite of human androgen receptor (hAR) gene and prostate cancer (PCa). Methods: The number of (CAG)n repeats in 107 normal males were measured by a two-step [α-32P]-dCTP incorporated asymmetric polymeric chain reaction (PCR), and the (CAG)n repeats of both malignant and nonmalignant prostate cells in fixed paraffin-embedded tissue (PET) specimen from 36 case of PCa were determined by sequence analysis. Results: The repeats of polymorphic (CAG) n among normal men ranged from 11 to 29, and the most frequent repeat was 22(18. 69%), with 23(14. 02%), 24(10. 28%) and 21(10. 28%) being less frequent. The (CAG)n repeats of malignant prostate cells equaled to that of nonmalignant adjacent prostate tissue cells from the same PET specimen in all 36 PCa, and the (CAG)n repeats in 36 PCa which ranged from 16 to 22 were shorter than that in normal males significantly (P<0. 05), while no significant difference in (CAG)n repeats among various grade of tumor's differentiation (well-differentiated, intermediate-differentiated and poor-differentiated) was found (P>0. 05). Conclusion; The present study suggest that short hAR gene (CAG)n micro-satellite might be associated with the occurrence of PCa, but not with the differentiation of PCa.展开更多
In recent years,advancements in single-cell and spatial transcriptomics,which are highly regarded developments in the current era,particularly the emerging integration of single-cell and spatiotemporal transcriptomics...In recent years,advancements in single-cell and spatial transcriptomics,which are highly regarded developments in the current era,particularly the emerging integration of single-cell and spatiotemporal transcriptomics,have enabled a detailed molecular comprehension of the complex regulation of cell fate.The insights obtained from these methodologies are anticipated to significantly contribute to the development of personalized medicine.Currently,single-cell technology is less frequently utilized for prostate cancer compared with other types of tumors.Start-ing from the perspective of RNA sequencing technology,this review outlined the signifcance of single-cell RNA sequencing(scRNA-seq)in prostate cancer research,encompassing preclinical medicine and clinical applications.We summarize the differences between mouse and human prostate cancer as revealed by scRNA-seq studies,as well as a combination of multi-omics methods involving scRNA-seq to highlight the key molecular targets for the diagnosis,treatment,and drug resistance characteristics of prostate cancer.These studies are expected to provide novel insights for the development of immunotherapy and other innovative treatment strategies for castration-resistant prostate cancer.Furthermore,we explore the potential clinical applications stemming from other single-cell technologies in this review,paving the way for future research in precision medicine.展开更多
Dear Editor,Although the incidence of prostate cancer(PCa) has decreased in recent decades in Western countries, it has gradually increased in China due to the increasingly longer life expectancy and more popular west...Dear Editor,Although the incidence of prostate cancer(PCa) has decreased in recent decades in Western countries, it has gradually increased in China due to the increasingly longer life expectancy and more popular westernized diet[1].展开更多
Objective To silence annexin Ⅱ gene expression by using small interference RNA (siRNA) in prostate cancer cell line PC3. Methods For in vitro transcription, four sequences of 29-nucleotide DNA template oligonucleo...Objective To silence annexin Ⅱ gene expression by using small interference RNA (siRNA) in prostate cancer cell line PC3. Methods For in vitro transcription, four sequences of 29-nucleotide DNA template oligonucleotides were designed, and one pair of the sequences were complementary to annexin Ⅱ gene. The other pair was negative control. The 8 nucleotides at the 3' end of each oligonucleotide were complementary to the T7 Promoter Primer. The sense and anti-sense siRNA templates were transcribed by T7 RNA polymerase and the resulting RNA transcripts were hybridized to create dsRNA. The siRNA was transfected into prostate cancer cell PC3. For assaying the efficiency of siRNA, confocal microscopy, Northern blotting, and Western blotting were employed to examine the expression of annexin Ⅱ protein and its mRNA. ^3H thymidine was used to measure DNA synthesis. Results The siRNA sequence specific to annexin Ⅱ gene was capable of inhibiting the expression of annexin Ⅱ protein and its mRNA. And cellular DNA synthesis was significantly reduced in siRNA transfected cells.Conclusions The protocol for the synthesis of siRNA by T7 RNA polymerase is feasible. Annexin Ⅱ might be involved in DNA synthesis.展开更多
基金supported by the Science and Technology Department of Hubei Province Key Project(YYXKNL2022001)the Non-Profit Central Research Institute Fund of Chinese Academy of Medical Sciences(2020-PT320-004)+2 种基金the Hubei Provincial Natural Science Foundation(2021CFB453)the Science,Technology and Innovation Seed Fund of Zhongnan Hospital of Wuhan University(CXPY2020031)the Climbing Program for Medical Talents of Zhongnan Hospital of Wuhan University(PDJH202206,PDJH202208)。
文摘Background:Globally,despite prostate cancer(PCa)representing second most prevalent malignancy in male,the precise molecular mechanisms implicated in its pathogenesis remain unclear.Consequently,elucidating the key molecular regulators that govern disease progression could substantially contribute to the establishment of novel therapeutic strategies,ultimately advancing the management of PCa.Methods:A total of 49 PCa tissues and 43 adjacent normal tissues were collected from January 2017 to December 2021 at Zhongnan Hospital of Wuhan University.The advanced transcriptomic methodologies were employed to identify differentially expressed mRNAs in PCa.The expression of aspartoacylase(ASPA)in PCa was thoroughly evaluated using quantitative real-time PCR and Western blotting techniques.To elucidate the inhibitory role of ASPA in PCa cell proliferation and metastasis,a comprehensive set of in vitro and in vivo assays were conducted,including orthotopic and tumor-bearing mouse models(n=8 for each group).A combination of experimental approaches,such as Western blotting,luciferase assays,immunoprecipitation assays,mass spectrometry,glutathione S-transferase pulldown experiments,and rescue studies,were employed to investigate the underlying molecular mechanisms of ASPA's action in PCa.The Student‘s t-test was employed to assess the statistical significance between two distinct groups,while one-way analysis of variance was utilized for comparisons involving more than two groups.A two-sided P<0.05 was deemed to indicate statistical significance.Results:ASPA was identified as a novel inhibitor of PCa progression.The expression of ASPA was found to be significantly down-regulated in PCa tissue samples,and its decreased expression was independently associated with patients’prognosis(HR=0.60,95%CI 0.40–0.92,P=0.018).Our experiments demonstrated that modulation of ASPA activity,either through gain-or loss-of-function,led to the suppression or enhancement of PCa cell proliferation,migration,and invasion,respectively.The inhibitory role of ASPA in PCa was further confirmed using orthotopic and tumor-bearing mouse models.Mechanistically,ASPA was shown to directly interact with the LYN and inhibit the phosphorylation of LYN as well as its downstream targets,JNK1/2 and C-Jun,in both PCa cells and mouse models,in an enzyme-independent manner.Importantly,the inhibition of LYN activation by bafetinib abrogated the promoting effect of ASPA knockdown on PCa progression in both in vitro and in vivo models.Moreover,we observed an inverse relationship between ASPA expression and LYN activity in clinical PCa samples,suggesting a potential regulatory role of ASPA in modulating LYN signaling.Conclusions:Our findings provide novel insights into the tumor-suppressive function of ASPA in PCa and highlight its potential as a prognostic biomarker and therapeutic target for the management of this malignancy.
基金National Key R&D Plan(2023YFC3403200)National Natural Science Foundation of China(82070784,81702536,81974099 and 82170785)+4 种基金Science&Technology Department of Sichuan Province,China(2022JDRC0040,21GJHZ0246)Young Investigator Award of Sichuan University 2017(2017SCU04A17)Sichuan University-Panzhihua Science and Technology Cooperation Special Fund(2020CDPZH-4)China Postdoctoral Science Foundation(2021M692306)Post-Doctor Research Project of West China Hospital of Sichuan University(2021HXBH025).
文摘Background Cell metabolism plays a pivotal role in tumor progression,and targeting cancer metabolism might effectively kill cancer cells.We aimed to investigate the role of hexokinases in prostate cancer(PCa)and identify a crucial target for PCa treatment.Methods The Cancer Genome Atlas(TCGA)database,online tools and clinical samples were used to assess the expression and prognostic role of ADP-dependent glucokinase(ADPGK)in PCa.The effect of ADPGK expression on PCa cell malignant phenotypes was validated in vitro and in vivo.Quantitative proteomics,metabolomics,and extracellular acidification rate(ECAR)and oxygen consumption rate(OCR)tests were performed to evaluate the impact of ADPGK on PCa metabolism.The underlying mechanisms were explored through ADPGK overexpression and knockdown,co-immunoprecipitation(Co-IP),ECAR analysis and cell counting kit-8(CCK-8)assays.Results ADPGK was the only glucokinase that was both upregulated and predicted worse overall survival(OS)in prostate adenocarcinoma(PRAD).Clinical sample analysis demonstrated that ADPGK was markedly upregulated in PCa tissues vs.non-PCa tissues.High ADPGK expression indicates worse survival outcomes,and ADPGK serves as an independent factor of biochemical recurrence.In vitro and in vivo experiments showed that ADPGK overexpression promoted PCa cell proliferation and migration,and ADPGK inhibition suppressed malignant phenotypes.Metabolomics,proteomics,and ECAR and OCR tests revealed that ADPGK significantly accelerated glycolysis in PCa.Mechanistically,ADPGK binds aldolase C(ALDOC)to promote glycolysis via AMP-activated protein kinase(AMPK)phosphorylation.ALDOC was positively correlated with ADPGK,and high ALDOC expression was associated with worse survival outcomes in PCa.Conclusions In summary,ADPGK is a driving factor in PCa progression,and its high expression contributes to a poor prognosis in PCa patients.ADPGK accelerates PCa glycolysis and progression by activating ALDOC-AMPK signaling,suggesting that ADPGK might be an effective target and marker for PCa treatment and prognosis evaluation.
基金supported by the Natural Science Foundation of Beijing(Z200027)the National Natural Science Foundation of China(62027901,81930053)the Key-Area Research and Development Program of Guangdong Province(2021B0101420005).
文摘The present study aimed to explore the potential of artificial intelligence(AI)methodology based on magnetic resonance(MR)images to aid in the management of prostate cancer(PCa).To this end,we reviewed and summarized the studies comparing the diagnostic and predictive performance for PCa between AI and common clinical assessment methods based on MR images and/or clinical characteristics,thereby investigating whether AI methods are generally superior to common clinical assessment methods for the diagnosis and prediction fields of PCa.First,we found that,in the included studies of the present study,AI methods were generally equal to or better than the clinical assessment methods for the risk assessment of PCa,such as risk stratification of prostate lesions and the prediction of therapeutic outcomes or PCa progression.In particular,for the diagnosis of clinically significant PCa,the AI methods achieved a higher summary receiver operator characteristic curve(SROC-AUC)than that of the clinical assessment methods(0.87 vs.0.82).For the prediction of adverse pathology,the AI methods also achieved a higher SROC-AUC than that of the clinical assessment methods(0.86 vs.0.75).Second,as revealed by the radiomics quality score(RQS),the studies included in the present study presented a relatively high total average RQS of 15.2(11.0–20.0).Further,the scores of the individual RQS elements implied that the AI models in these studies were constructed with relatively perfect and standard radiomics processes,but the exact generalizability and clinical practicality of the AI models should be further validated using higher levels of evidence,such as prospective studies and open-testing datasets.
文摘Objective To investigate the expression of programmed cell death 5 (PDCD5) in tissues of normal human prostate (NP), benign prostatic hyperplasia (BPH), and prostate cancer (PCa) in order to assess the clinical role of PDCD5 in PCa. Methods PDCD5 expression was determined by EnVision immunohistochemical staining in forma-lin-fixed and paraffin-embedded specimens obtained from 12 subjects with NP, 22 with BPH, and 22 with PCa. In addition, PCa cases were classified as low/middle-risk (Gleason sumS7) and high-risk (Gleason sum〉7) on the basis of Gleason grade. Positive expression rates and intensity of PDCD5 protein were observed under light microscope and analyzed with computer imaging technique. Expression of PDCD5 was compared among different prostatic tissues. Results The expression of PDCD5 was significantly lower in tissue of PCa than in tissues of NP and BPH (P〈0.01). However, there was no significant difference in PDCD5 expression between tissues of NP and BPH. In addition, the expression of PDCD5 was further downregulated with the increase of Gleason sum in PCa. Conclusions By downregulating apoptosis, low PDCD5 expression may play an important role in the occurrence and development of PCa. PDCD5 is supposed to have a potential clinical value to be a new predictor of progression and target of gene therapy in PCa.
基金supported by the National Key R&D Program of China(No.2018YFE0205100)the Key Program of the National Natural Science Foundation of China(No.U1632270)+1 种基金National Natural Science Foundation of China(No.11665003)Cancer Research Youth Science Foundation of Chinese Anti-cancer Association(No.CAYC18A06)。
文摘Carbon ion radiotherapy has the advantages of better therapeutic effect and fewer side effects compared with those of X-rays in many kinds of tumors,including prostate cancer,and thus is an attractive treatment approach for prostate cancer.However,the biological effects and underlying mechanisms of carbon ion irradiation in prostate cancer are not yet fully understood.Therefore,this study systematically compared the effects of carbon ion irradiation with those of X-ray irradiation on DNA damage response and found that carbon ion irradiation was more effective than X-ray irradiation.Carbon ion irradiation can induce a high level of DNA double-strand break damage,reflected by the number of y-H2 A histone family member X foci,as well as by the foci lasting time and size.Moreover,carbon ion irradiation exhibited strong and long-lasting inhibitory effect on cell survival capability,induced prolonged cell cycle arrest,and increased apoptosis in PC-3 cells.As an underlying mechanism,we speculated that carbon ion irradiation-induced DNA damage evokes cell cycle arrest and apoptosis via the pRb/E2 F1/c-Myc signaling pathway to enhance the radiosensitivity of p53-deficient prostate cancer PC-3 cells.Collectively,the present study suggests that carbon ion irradiation is more efficient than X-ray irradiation and may help to understand the effects of different radiation qualities on the survival potential of p53-deficient prostate cancer cells.
文摘Objective: To investigate the inhibitory effect of apogossypolone (ApoG2) on prostate cancer cell line PC-3 in vivo, and explore its mechanism. Methods: The models of transplantation tumors in Balb/c nu/nu mice were established via subcutaneous injection of PC-3 cells and the tumor-transplanted mice were divided into 4 groups: control group and three ApoG2 treatment groups, with 10 mice in each group. Volumes of the tumor were estimated every 2 d and the morphology of tumor tissues was observed. Immunohistochemistry was employed to observe the expression of Bcl-2, PCNA, CD31, caspase-3 and caspase-8 in tumor tissues. Results: ApoG2 (2.5 mg/kg-10 mg/kg) given intraperitoneally once a day can obviously inhibit the growth of subcutaneous prostatic carcinoma implant. The tumor volume decreased obviously when the treatment dosage was bigger than 5.0 mg/kg (P<0.01). Meanwhile, ApoG2 decreased the expression of PCNA and CD31, and enhanced the expression of caspases-3, caspase-8 in tumor tissues. Conclusion: ApoG2 exert an inhibitory effect on prostatic carcinoma possibly by inducing apoptosis and inhibiting tumor angiogenesis.
文摘Objective To quantitatively evaluate the metabolic changes of benign prostatic hyperplasia(BPH) and prostate cancer in the transitional zone using magnetic resonance spectroscopic imaging(MRSI),and to analyze the characteristics and differences of the spectra in this zonal area.Methods Eighteen patients with prostate cancer in the transitional zone underwent magnetic resonance imaging(MRI)/MRSI examinations.The(Choline+Creatine)/Citrate(CC/Ci) ratio and the Choline/Creatine(Cho/Cr) ratio were evaluated in each voxel with cancer or BPH confirmed by pathological results.Discriminant analysis was used to determine the power of the two ratios in differentiation between cancer and BPH.Results The CC/Ci ratio and Cho/Cr ratio for cancer voxels were significantly higher than those in the voxels with BPH in the transitional zone(CC/Ci:2.36±1.31 vs.0.85±0.29,P<0.01;Cho/Cr:4.14±1.79 vs.1.26±0.45,P<0.01).As for the discriminant function with the CC/Ci ratio and the Cho/Cr ratio,the specificity,sensitivity,and accuracy were 98.6%,85.7%,92.9% respectively for the differentiation between cancer and BPH.Conclusions The prostate cancer is characterized by higher CC/Ci ratio and Cho/Cr ratio compared to BPH in the transitional zone.Both CC/Ci ratio and Cho/Cr ratio have high specificity,sensitivity,and accuracy in their discriminative power between cancer and BPH in this zonal area.
文摘Background:The burden of kidney,bladder,and prostate cancers has changed in recent decades.This study aims to investigate the global and regional burden of,and attributable risk factors for genitourinary cancers during the past 30 years.Methods:We extracted data of kidney,bladder,and prostate cancers from the Global Burden of Disease 2019 database,including incidence,mortality,disability-adjusted life-years(DALYs),and attributable risk factors from 1990 to 2019.Estimated annual percentage changes(EAPC)were calculated to assess the changes in age-standardized incidence rate,age-standardized mortality rate(ASMR),and age-standardized DALYs rate(ASDR).The associations between cancers burden and socio-demographic index(SDI)were also analyzed.Results:Compared with 1990,the global incident cases in 2019 were higher by 154.78%,123.34%,and 169.11%for kidney,bladder,and prostate cancers,respectively.During the 30-year study period,there was a downward trend in ASMR and ASDR for bladder cancer(EAPC=–0.68 and–0.83,respectively)and prostate cancer(EAPC=–0.75 and–0.71,respectively),but an upward trend for kidney cancer(EAPC=0.35 and 0.12,respectively).Regions and countries with higher SDI had higher incidence,mortality,and DALYs for all three types of cancers.The burden of bladder and prostate cancers was mainly distributed among older men,whereas the burden of kidney cancer increased among middle-aged men.Smoking related mortality and DALYs decreased,but high body mass index(BMI)and high fasting plasma glucose(FPG)related mortality and DALYs increased among kidney,bladder,and prostate cancers during the study period.Conclusions:Kidney,bladder,and prostate cancers remain major global public health challenges,but with distinct trend for different disease entity across different regions and socioeconomic status.More proactive intervention strategies,at both the administrative and academic levels,based on the dynamic changes,are needed.
文摘Objective To build a prostate cancer(PCa) risk prediction model based on common clinical indicators to provide a theoretical basis for the diagnosis and treatment of PCa and to evaluate the value of artificial intelligence(AI) technology under healthcare data platforms.Methods After preprocessing of the data from Population Health Data Archive,smuothly clipped absolute deviation(SCAD) was used to select features.Random forest(RF),support vector machine(SVM),back propagation neural network(BP),and convolutional neural network(CNN) were used to predict the risk of PCa,among which BP and CNN were used on the enhanced data by SMOTE.The performances of models were compared using area under the curve(AUC) of the receiving operating characteristic curve.After the optimal model was selected,we used the Shiny to develop an online calculator for PCa risk prediction based on predictive indicators.Results Inorganic phosphorus,triglycerides,and calcium were closely related to PCa in addition to the volume of fragmented tissue and free prostate-specific antigen(PSA).Among the four models,RF had the best performance in predicting PCa(accuracy:96.80%;AUC:0.975,95% CI:0.964-0.986).Followed by BP(accuracy:85.36%;AUC:0.892,95% CI:0.849-0.934) and SVM(accuracy:82.67%;AUC:0.824,95% CI:0.805-0.844).CNN performed worse(accuracy:72.37%;AUC:0.724,95% CI:0.670-0.779).An online platform for PCa risk prediction was developed based on the RF model and the predictive indicators.Conclusions This study revealed the application value of traditional machine learning and deep learning models in disease risk prediction under healthcare data platform,proposed new ideas for PCa risk prediction in patients suspected for PCa and had undergone core needle biopsy.Besides,the online calculation may enhance the practicability of AI prediction technology and facilitate medical diagnosis.
基金Supported by medical funds of Shanghai Science and Technology Commission
文摘Objective: To investigate the antitumor activity of tumor lysate-pulsed dendritic cells vaccine in RM-1 prostate cancer mice model with the survival time of mice calculated and the tumor size measured in DC vaccine therapy. Methods: C57BL/6 mice were immunized on the dorsal flank by s.c. inoculation of Lysate-DC, ova-DC, and non-DC on day -7. On day 0, 2× 10^6cells of RM-1 tumor cells (H-2b) were injected s.c. in C57BL/6 mice pre-treated by s.c. inoculation of modified DCs, correspondingly. DTH assay was performed with modified DCs. In partial test, for the determination of which immune cells were required for antitumor activity, mice were immunodepleted of CD4, CDS, or natural killer (NK) NK1.1 cells with the corresponding monoclonal antibodies. The survival time of nude mice loaded with tumor cells was calculated and the size of tumor measured. Results: In RM-1 mice prostate cancer model, immunized with lysate-DC, compared with ova-DC and non-DC, the pre-infection vaccine resulted in 100% clearance of primary tumors, whereas on day 0 of injection vaccine cleared 40-60% of primary tumors. On day 0, C57BL/6 mice (H-2b) were immunized with Lysate-DC, compared with ova-DC and non-DC by caudal vein injection, then on day 15, RM-1 cells were inoculated. On day 30, average diameters of tumor in different groups of modified DC were 23.7±5.4 mm, 22.1±4.9 mm, 4.3±2.6 mm, respectively. Lysate-DC, compared with ova-DC and non-DC, can greatly depressed RM-1 tumor cell growth (P〈0.01). The mean survival time of C57BL/6 mice in Lysate-DC, ova-DC and non-DC groups were 15.8±2.6, 16.6±3.2, 39.0±5.6, respectively, and there was a significant difference in the mean survival time in lysate-DC group between ova-DC and non-DC group (P〈0.01). DTH test showed that lysate-DC could prime T lymphocyte and elicit tumor antigen specific immune response, and over 80% mice in groups of lysate-DC showed obvious swelling in their foot pad. This response was strengthened with repeating inoculation, whereas DTH response was not seen in control group. In vivo depletion of NK cells resulted in a 40-60% reduction in growth suppression within the primary tumor, and depletion of CD4^+ cells resulted in a 20% reduction in growth suppression. Conclusion: The minor lysate-pulsed dendritic cells vaccine could elicit antitumor activity in RM-1 loaded C57BL/6 mice, and prolong the duration of RM-1 loaded C57BL/6 mice. So DC-based immunotherapy with hormone-refractory prostate carcinoma yielded protective immunity, generated efficient cellular antitumor responses, thereby providing further preclinical support for feasible immunotherapy approaches for prostate cancer.
文摘Objective:To explore the expression of nuclear receptor corepressor (NCoR) in androgen independence prostate cancer (AIPC) and its clinical significance. Methods:The expression of NCoR and androgen receptor (AR) in prostatie tissues, from 15 cases with AIPC, 20 cases with androgen dependence prostate cancer (ADPC) and 20 cases with benign prostatic hyperplasia (BPH), was detected by immunohistoehemistry respectively. Results:The expression of NCoR was observed mainly in the nucleus and slightly in the nucleus. The positive cell percentage of NCoR in AIPC was significantly lower than that in ADPC and BPH (P〈0. 01). The NCoR expression was significantly lower in low differentiation prostate cancer (Pca) than that in high differentiation Pca (P〈0. 05). The rate of NCoR expression was significantly higher in low stage Pca than that in high stage Pca (P〈0. 05). AR, expressing in the nucleus, was found to be negative in one case of AIPC, while was strongly expressed in other cases of AIPC, and all eases of ADPC and BPH. Conclusion: The transition to AIPC of Pea may be correlated with the decrease of NCoR protein.
基金Supported by the National Natural Science Foundation of China (No. 39670300)
文摘Objective: To study the relationship between the polymorphic (CAG)n micro-satellite of human androgen receptor (hAR) gene and prostate cancer (PCa). Methods: The number of (CAG)n repeats in 107 normal males were measured by a two-step [α-32P]-dCTP incorporated asymmetric polymeric chain reaction (PCR), and the (CAG)n repeats of both malignant and nonmalignant prostate cells in fixed paraffin-embedded tissue (PET) specimen from 36 case of PCa were determined by sequence analysis. Results: The repeats of polymorphic (CAG) n among normal men ranged from 11 to 29, and the most frequent repeat was 22(18. 69%), with 23(14. 02%), 24(10. 28%) and 21(10. 28%) being less frequent. The (CAG)n repeats of malignant prostate cells equaled to that of nonmalignant adjacent prostate tissue cells from the same PET specimen in all 36 PCa, and the (CAG)n repeats in 36 PCa which ranged from 16 to 22 were shorter than that in normal males significantly (P<0. 05), while no significant difference in (CAG)n repeats among various grade of tumor's differentiation (well-differentiated, intermediate-differentiated and poor-differentiated) was found (P>0. 05). Conclusion; The present study suggest that short hAR gene (CAG)n micro-satellite might be associated with the occurrence of PCa, but not with the differentiation of PCa.
基金Chinese Scholarship Council(202206240086)National Natural Science Foundation of China(81974099,82170785,81974098,82170784)+4 种基金National Key Research and Development Program of China(2021YFC2009303)programs from Science and Technology Department of Sichuan Province(2021YFH0172)Young Investigator Award of Sichuan University 2017(2017SCU04A17)Technology Innovation Research and Development Project of Chengdu Science and Technology Bureau(2019-YF05-00296-SN)Sichuan University-Panzhihua science and technology cooperation special fund(2020CDPZH-4).
文摘In recent years,advancements in single-cell and spatial transcriptomics,which are highly regarded developments in the current era,particularly the emerging integration of single-cell and spatiotemporal transcriptomics,have enabled a detailed molecular comprehension of the complex regulation of cell fate.The insights obtained from these methodologies are anticipated to significantly contribute to the development of personalized medicine.Currently,single-cell technology is less frequently utilized for prostate cancer compared with other types of tumors.Start-ing from the perspective of RNA sequencing technology,this review outlined the signifcance of single-cell RNA sequencing(scRNA-seq)in prostate cancer research,encompassing preclinical medicine and clinical applications.We summarize the differences between mouse and human prostate cancer as revealed by scRNA-seq studies,as well as a combination of multi-omics methods involving scRNA-seq to highlight the key molecular targets for the diagnosis,treatment,and drug resistance characteristics of prostate cancer.These studies are expected to provide novel insights for the development of immunotherapy and other innovative treatment strategies for castration-resistant prostate cancer.Furthermore,we explore the potential clinical applications stemming from other single-cell technologies in this review,paving the way for future research in precision medicine.
基金supported by the National Natural Science Foundation of China (81902574)the Shanghai Basic Research Program (19JC1411600)+1 种基金the Shanghai Natural Science Foundation (21ZR1414500)the Shanghai Sailing Program (19YF1409800)。
文摘Dear Editor,Although the incidence of prostate cancer(PCa) has decreased in recent decades in Western countries, it has gradually increased in China due to the increasingly longer life expectancy and more popular westernized diet[1].
文摘Objective To silence annexin Ⅱ gene expression by using small interference RNA (siRNA) in prostate cancer cell line PC3. Methods For in vitro transcription, four sequences of 29-nucleotide DNA template oligonucleotides were designed, and one pair of the sequences were complementary to annexin Ⅱ gene. The other pair was negative control. The 8 nucleotides at the 3' end of each oligonucleotide were complementary to the T7 Promoter Primer. The sense and anti-sense siRNA templates were transcribed by T7 RNA polymerase and the resulting RNA transcripts were hybridized to create dsRNA. The siRNA was transfected into prostate cancer cell PC3. For assaying the efficiency of siRNA, confocal microscopy, Northern blotting, and Western blotting were employed to examine the expression of annexin Ⅱ protein and its mRNA. ^3H thymidine was used to measure DNA synthesis. Results The siRNA sequence specific to annexin Ⅱ gene was capable of inhibiting the expression of annexin Ⅱ protein and its mRNA. And cellular DNA synthesis was significantly reduced in siRNA transfected cells.Conclusions The protocol for the synthesis of siRNA by T7 RNA polymerase is feasible. Annexin Ⅱ might be involved in DNA synthesis.