针对飞行模拟器人感系统的高度非线性和易受干扰性,提出一种基于PIDNN(Proportional Integral Differential Neural Network)的控制方案.首先对飞行模拟器人感系统的模型进行分析研究,对它所受到的外界干扰作理论分析,整理出系统的数学...针对飞行模拟器人感系统的高度非线性和易受干扰性,提出一种基于PIDNN(Proportional Integral Differential Neural Network)的控制方案.首先对飞行模拟器人感系统的模型进行分析研究,对它所受到的外界干扰作理论分析,整理出系统的数学模型,再利用PIDNN控制器优良的在线训练、学习和调整功能对该模型进行仿真控制.与传统PID(Propor-tional Integral Differential)控制器相比,PIDNN结构简单、自适应性强、收敛速度快、不会陷入局部极小.仿真结果表明:PIDNN控制系统响应速度快、稳态精度高、具有良好的动静态特性和鲁棒性,满足实时控制的要求.展开更多
针对开关磁阻电机存在的转矩脉动大、噪声大、速度不稳定等问题,对开关磁阻电机的启动、运行、调速等方面进行了研究,提出了一种基于模糊神经网络PID的控制方法,将模糊控制理论与BP神经网络相结合,构成了模糊BP神经网络,根据系统误差,...针对开关磁阻电机存在的转矩脉动大、噪声大、速度不稳定等问题,对开关磁阻电机的启动、运行、调速等方面进行了研究,提出了一种基于模糊神经网络PID的控制方法,将模糊控制理论与BP神经网络相结合,构成了模糊BP神经网络,根据系统误差,误差的变化,以及误差变化的变化实时调整PID控制参数,使电机在整个转速范围内获得了最优的PID参数。实验采用DSP作为控制核心,不对称逆变桥作为功率变换器,驱动一台2 k W的开关磁阻电机运行。研究结果表明,该方法大大改善了开关磁阻电机控制系统的动、静态性能,控制精度高、转矩脉动小,对干扰有较高的鲁棒性。展开更多
针对常规比例、积分和微分(proportional integral derivative,PID)控制器在无人艇航向控制系统中表现出的稳定性差、控制精度低等问题,文章提出一种将模糊控制与反向传播(back propagation,BP)神经网络相结合的控制算法;在MATLAB中对...针对常规比例、积分和微分(proportional integral derivative,PID)控制器在无人艇航向控制系统中表现出的稳定性差、控制精度低等问题,文章提出一种将模糊控制与反向传播(back propagation,BP)神经网络相结合的控制算法;在MATLAB中对比常规PID控制器、模糊PID控制器与模糊神经网络PID控制器在给定期望航向角下的航向控制性能,仿真结果表明模糊神经网络PID控制器对无人艇的航向控制性能最佳;在搭建的实验平台上对不同航向控制器下无人艇的航行轨迹和航向角进行比较,实验结果进一步验证了模糊神经网络PID航向控制算法的优越性。展开更多
文摘针对飞行模拟器人感系统的高度非线性和易受干扰性,提出一种基于PIDNN(Proportional Integral Differential Neural Network)的控制方案.首先对飞行模拟器人感系统的模型进行分析研究,对它所受到的外界干扰作理论分析,整理出系统的数学模型,再利用PIDNN控制器优良的在线训练、学习和调整功能对该模型进行仿真控制.与传统PID(Propor-tional Integral Differential)控制器相比,PIDNN结构简单、自适应性强、收敛速度快、不会陷入局部极小.仿真结果表明:PIDNN控制系统响应速度快、稳态精度高、具有良好的动静态特性和鲁棒性,满足实时控制的要求.
文摘针对开关磁阻电机存在的转矩脉动大、噪声大、速度不稳定等问题,对开关磁阻电机的启动、运行、调速等方面进行了研究,提出了一种基于模糊神经网络PID的控制方法,将模糊控制理论与BP神经网络相结合,构成了模糊BP神经网络,根据系统误差,误差的变化,以及误差变化的变化实时调整PID控制参数,使电机在整个转速范围内获得了最优的PID参数。实验采用DSP作为控制核心,不对称逆变桥作为功率变换器,驱动一台2 k W的开关磁阻电机运行。研究结果表明,该方法大大改善了开关磁阻电机控制系统的动、静态性能,控制精度高、转矩脉动小,对干扰有较高的鲁棒性。
文摘针对常规比例、积分和微分(proportional integral derivative,PID)控制器在无人艇航向控制系统中表现出的稳定性差、控制精度低等问题,文章提出一种将模糊控制与反向传播(back propagation,BP)神经网络相结合的控制算法;在MATLAB中对比常规PID控制器、模糊PID控制器与模糊神经网络PID控制器在给定期望航向角下的航向控制性能,仿真结果表明模糊神经网络PID控制器对无人艇的航向控制性能最佳;在搭建的实验平台上对不同航向控制器下无人艇的航行轨迹和航向角进行比较,实验结果进一步验证了模糊神经网络PID航向控制算法的优越性。