期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
基于近邻保留PNMF特征提取的高光谱图像分类 被引量:2
1
作者 温金环 田铮 +2 位作者 林伟 周敏 延伟东 《西北工业大学学报》 EI CAS CSCD 北大核心 2012年第1期138-144,共7页
通过对投影非负矩阵分解(PNMF)增加近邻保留假设,提出了一种新的高光谱图像线性特征提取方法———近邻保留投影非负矩阵分解(NPPNMF)。NPPNMF保留了高光谱数据在低维特征空间中的局部几何结构,克服了PNMF基于Euclidean的缺点。根据在构... 通过对投影非负矩阵分解(PNMF)增加近邻保留假设,提出了一种新的高光谱图像线性特征提取方法———近邻保留投影非负矩阵分解(NPPNMF)。NPPNMF保留了高光谱数据在低维特征空间中的局部几何结构,克服了PNMF基于Euclidean的缺点。根据在构造k近邻图时是否使用训练样本的类标签信息决定了NPPNMF既可以是无监督的特征提取方法,也可以是有监督的特征提取方法,从而提高了PNMF算法的鉴别力。理论证明和高光谱图像数据的分类结果表明了该方法的有效性及应用潜力。 展开更多
关键词 高光谱图像分类 特征提取 降维 投影非负矩阵分解 近邻保留
在线阅读 下载PDF
两阶段非负矩阵分解算法及其在光谱解混中的应用
2
作者 杨颂 张新元 +1 位作者 刘晓 孙莉 《山东农业大学学报(自然科学版)》 北大核心 2024年第3期422-426,共5页
非负矩阵分解问题(nonnegative matrix factorization,NMF)模型已成功应用至高光谱遥感影像处理中的光谱解混工作,由于NMF优化模型具有多个局部极小点,使得分解结果不稳定。设计初始化方法或者选择带正则项的问题模型是提高分解精度的... 非负矩阵分解问题(nonnegative matrix factorization,NMF)模型已成功应用至高光谱遥感影像处理中的光谱解混工作,由于NMF优化模型具有多个局部极小点,使得分解结果不稳定。设计初始化方法或者选择带正则项的问题模型是提高分解精度的两种常用方法。本文提出了两阶段的NMF算法,实现了初始点选取和正则项设计的结合。第一阶段借助k-均值获得k个聚类中心,给出迭代的初始点;利用第一阶段的初始矩阵U^(0),定义了针对端元矩阵的正则项‖U-U^(0)‖_(F)^(2),第二阶段采用基于交替非负最小二乘框架的投影梯度算法,求解新的正则化NMF问题。正则项中的端元初始矩阵U^(0)除了采用k-均值获得k个聚类中心,也可采用真实地物光谱,它的引入提高了算法的灵活度。数值结果表明新算法更加稳定,且分解的精确性有效提高。 展开更多
关键词 非负矩阵分解 正则项 投影梯度法 光谱解混
在线阅读 下载PDF
基于结构投影非负矩阵分解的协同过滤算法 被引量:12
3
作者 居斌 钱沄涛 叶敏超 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2015年第7期1319-1325,共7页
针对在协同过滤算法中,传统矩阵分解技术在降维过程中会破坏数据相邻结构的问题,提出基于结构投影非负矩阵分解的协同过滤算法(CF-SPNMF).该算法包含离线学习和在线搜索2个阶段.在离线学习阶段,通过对用户评分矩阵的投影非负矩阵分解,... 针对在协同过滤算法中,传统矩阵分解技术在降维过程中会破坏数据相邻结构的问题,提出基于结构投影非负矩阵分解的协同过滤算法(CF-SPNMF).该算法包含离线学习和在线搜索2个阶段.在离线学习阶段,通过对用户评分矩阵的投影非负矩阵分解,同时保留用户特征的聚类结构,得到低维的用户潜在兴趣因子.在线搜索阶段,将用户潜在兴趣因子进行余弦相似性匹配,发现目标用户与训练样本用户之间兴趣最相似的邻域集合.在实际数据集上的实验结果表明,提出的CF-SPNMF算法与单纯使用矩阵分解和单纯在原评分矩阵上进行用户聚类的推荐算法相比,能够更有效地预测用户实际评分. 展开更多
关键词 协同过滤 投影非负矩阵分解 相邻结构 聚类
在线阅读 下载PDF
遥感图像配准的稳健投影非负矩阵分解方法 被引量:1
4
作者 段西发 田铮 +1 位作者 齐培艳 贺飞跃 《计算机工程与应用》 CSCD 2013年第7期28-34,97,共8页
由于要配准的目标存在可能的形变,震前和震后遥感图像的配准变得很困难。为了解决这个问题,提出基于稳健的投影非负矩阵分解(RPNMF)的配准方法来精确的配准形变目标。给出一种稳健的投影非负矩阵分解方法来获得震前震后形变目标的共同... 由于要配准的目标存在可能的形变,震前和震后遥感图像的配准变得很困难。为了解决这个问题,提出基于稳健的投影非负矩阵分解(RPNMF)的配准方法来精确的配准形变目标。给出一种稳健的投影非负矩阵分解方法来获得震前震后形变目标的共同投影空间,利用在共同投影空间的投影来配准形变目标。为验证该算法的有效性,做了两个实验:2008年5月12日汶川地震前后的SAR图像的配准;唐家山堰塞湖的变化检测。与现有方法进行比较,结果表明该方法能够有效地得到形变目标的共同投影空间,并取得了很好的配准结果;同时,堰塞湖的变化检测也得到了很好的结果。 展开更多
关键词 遥感图像 形变目标 非负矩阵分解 稳健的投影非负矩阵分解 投影空间 异常值
在线阅读 下载PDF
一种基于L_1稀疏正则化和非负矩阵分解的盲源信号分离新算法 被引量:7
5
作者 殷海青 刘红卫 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2010年第5期835-841,共7页
针对线性混合模型下的盲源分离这一反问题,提出了一种结合迭代正则化和非负矩阵分解的交替最小化算法.首先把该问题转化为有界约束的二次规划,然后采用了一种自适应BB(Barzilai-Borwein)步长的投影梯度算法来求解.该方法不仅可减少存储... 针对线性混合模型下的盲源分离这一反问题,提出了一种结合迭代正则化和非负矩阵分解的交替最小化算法.首先把该问题转化为有界约束的二次规划,然后采用了一种自适应BB(Barzilai-Borwein)步长的投影梯度算法来求解.该方法不仅可减少存储量,提高算法速度,而且还很好地刻画了信号的稀疏性和独立性.理论分析和数值试验都验证了该方法的有效性,对混合的二维图像能提高分离的信干比. 展开更多
关键词 盲源信号分离 反问题 非负矩阵分解 投影梯度算法 信干比
在线阅读 下载PDF
基于投影梯度及下逼近方法的非负矩阵分解 被引量:3
6
作者 叶军 《计算机工程》 CAS CSCD 2012年第3期200-202,共3页
在非负矩阵分解算法中,为提升基矩阵的稀疏表达能力,在不事先设定稀疏度的情形下,提出一种基于投影梯度及下逼近方法的非负矩阵分解算法——PGNMU。通过引入上界的约束条件,利用基于投影梯度的交替迭代方法提取基矩阵的重要特征并加以... 在非负矩阵分解算法中,为提升基矩阵的稀疏表达能力,在不事先设定稀疏度的情形下,提出一种基于投影梯度及下逼近方法的非负矩阵分解算法——PGNMU。通过引入上界的约束条件,利用基于投影梯度的交替迭代方法提取基矩阵的重要特征并加以应用。在人脸数据库CBCL和ORL上的实验结果表明,该方法能改进基矩阵的稀疏描述能力,且其识别率也优于已有方法。 展开更多
关键词 非负矩阵分解 投影梯度 下逼近 松弛法 稀疏度 基矩阵
在线阅读 下载PDF
图像特征点集匹配的稳健非线性投影NMF方法
7
作者 段西发 田铮 +1 位作者 齐培艳 延伟东 《光电工程》 CAS CSCD 北大核心 2013年第6期129-136,共8页
包含相同目标的图像由于可能存在结构差异而导致特征匹配困难、不精确,针对该问题提出了一种新的匹配方法。首先,提出一种稳健的非线性投影非负矩阵分解方法(RNPNMF),利用RNPNMF得到特征点集的共同投影空间;然后,计算特征点集在共同投... 包含相同目标的图像由于可能存在结构差异而导致特征匹配困难、不精确,针对该问题提出了一种新的匹配方法。首先,提出一种稳健的非线性投影非负矩阵分解方法(RNPNMF),利用RNPNMF得到特征点集的共同投影空间;然后,计算特征点集在共同投影空间的投影,利用特征点集在共同投影空间上的投影实现点集的精确匹配。最后,为验证本文方法的有效性,分别对光学图像和SAR图像进行了实验,实验结果表明:和现有方法相比,本文所提方法能更精确有效的实现特征点集的匹配,同时,应用于图像配准也得到了很好的结果。 展开更多
关键词 投影非负矩阵分解 稳健的非线性投影非负矩阵分解 图像配准 特征匹配 异常值
在线阅读 下载PDF
基于多核学习的投影非负矩阵分解算法 被引量:3
8
作者 李谦 景丽萍 于剑 《计算机科学》 CSCD 北大核心 2014年第2期64-67,共4页
非负矩阵分解(NMF)把给定的数据矩阵分解成低维的非负基矩阵和对应的系数矩阵,两者之间存在必然联系。为此,研究者将基矩阵转换为系数矩阵的投影,进一步提高分解效率。但是该方法无法处理非线性数据,核函数的引入部分解决了此问题,却同... 非负矩阵分解(NMF)把给定的数据矩阵分解成低维的非负基矩阵和对应的系数矩阵,两者之间存在必然联系。为此,研究者将基矩阵转换为系数矩阵的投影,进一步提高分解效率。但是该方法无法处理非线性数据,核函数的引入部分解决了此问题,却同时导致核函数参数选择的问题。基于多核学习理论,提出了一种多核学习的投影非负矩阵分解(MKPNMF)算法,该算法有效地避免了核函数参数选择的问题,同时提高了学习性能。在实际人脸数据上的实验结果表明,MKPNMF较已有的NMF类方法具备明显的性能优势。 展开更多
关键词 投影非负矩阵分解 核函数 多核学习
在线阅读 下载PDF
基于Huber损失的非负矩阵分解算法 被引量:4
9
作者 王丽星 曹付元 《计算机科学》 CSCD 北大核心 2020年第11期80-87,共8页
非负矩阵分解(Nonnegative Matrix Factorization)算法能为原始数据找到非负的、线性的矩阵表示且保留了数据的本质特征,已被成功应用于多个领域。经典的NMF算法及其变体算法大部分使用均方误差函数来度量重建误差,在许多任务中已经显... 非负矩阵分解(Nonnegative Matrix Factorization)算法能为原始数据找到非负的、线性的矩阵表示且保留了数据的本质特征,已被成功应用于多个领域。经典的NMF算法及其变体算法大部分使用均方误差函数来度量重建误差,在许多任务中已经显示出其有效性,但它在处理含有噪声的数据时仍然面临一些困难。Huber损失函数对较小的残差执行的惩罚与均方误差损失函数相同,对较大的残差执行的惩罚是线性增长的,因此与均方误差损失函数相比,Huber损失函数具有更强的鲁棒性;已有研究证明L_(2,1)范数稀疏正则项在机器学习的分类和聚类模型中具有特征选择作用。结合两者的优点,文中提出了一种基于Huber损失函数且融入L_(2,1)范数正则项的非负矩阵分解聚类模型,并给出了基于投影梯度更新规则的优化过程。在多组数据集上将所提算法与经典的多种聚类算法进行对比,实验结果验证了所提算法的有效性。 展开更多
关键词 非负矩阵分解 Huber损失函数 L2 1范数 投影梯度法
在线阅读 下载PDF
邻域保持判别非负矩阵分解 被引量:3
10
作者 王亚芳 《计算机工程与应用》 CSCD 北大核心 2010年第28期163-166,共4页
非负矩阵分解(NMF)是一种新的矩阵分解技术,为了提高NMF算法的识别率,提出了一种新的方法——邻域保持判别非负矩阵分解(NPDNMF),该方法通过将邻域保持判别分析(NPDA)与NMF相结合来实现。邻域保持判别分析是一个将线性判别分析(LDA)与... 非负矩阵分解(NMF)是一种新的矩阵分解技术,为了提高NMF算法的识别率,提出了一种新的方法——邻域保持判别非负矩阵分解(NPDNMF),该方法通过将邻域保持判别分析(NPDA)与NMF相结合来实现。邻域保持判别分析是一个将线性判别分析(LDA)与局部保持投影(LPP)综合考虑的判别分析方法,该算法既保持了LDA的判别能力,同时又可以保持原始数据的几何结构。通过将NPDA与NMF相结合,提取得到局部化同时又有很强判别能力的基图像。在ORL人脸数据库上进行人脸识别实验,结果表明该方法得到较好的识别效果。 展开更多
关键词 线性判别分析 邻域保持判别分析 局部保持投影 非负矩阵分解
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部