期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
BDMFuse:Multi-scale network fusion for infrared and visible images based on base and detail features
1
作者 SI Hai-Ping ZHAO Wen-Rui +4 位作者 LI Ting-Ting LI Fei-Tao Fernando Bacao SUN Chang-Xia LI Yan-Ling 《红外与毫米波学报》 北大核心 2025年第2期289-298,共10页
The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method f... The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method for infrared and visible image fusion is proposed.The encoder designed according to the optimization objective consists of a base encoder and a detail encoder,which is used to extract low-frequency and high-frequency information from the image.This extraction may lead to some information not being captured,so a compensation encoder is proposed to supplement the missing information.Multi-scale decomposition is also employed to extract image features more comprehensively.The decoder combines low-frequency,high-frequency and supplementary information to obtain multi-scale features.Subsequently,the attention strategy and fusion module are introduced to perform multi-scale fusion for image reconstruction.Experimental results on three datasets show that the fused images generated by this network effectively retain salient targets while being more consistent with human visual perception. 展开更多
关键词 infrared image visible image image fusion encoder-decoder multi-scale features
在线阅读 下载PDF
Ship recognition based on HRRP via multi-scale sparse preserving method
2
作者 YANG Xueling ZHANG Gong SONG Hu 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第3期599-608,共10页
In order to extract the richer feature information of ship targets from sea clutter, and address the high dimensional data problem, a method termed as multi-scale fusion kernel sparse preserving projection(MSFKSPP) ba... In order to extract the richer feature information of ship targets from sea clutter, and address the high dimensional data problem, a method termed as multi-scale fusion kernel sparse preserving projection(MSFKSPP) based on the maximum margin criterion(MMC) is proposed for recognizing the class of ship targets utilizing the high-resolution range profile(HRRP). Multi-scale fusion is introduced to capture the local and detailed information in small-scale features, and the global and contour information in large-scale features, offering help to extract the edge information from sea clutter and further improving the target recognition accuracy. The proposed method can maximally preserve the multi-scale fusion sparse of data and maximize the class separability in the reduced dimensionality by reproducing kernel Hilbert space. Experimental results on the measured radar data show that the proposed method can effectively extract the features of ship target from sea clutter, further reduce the feature dimensionality, and improve target recognition performance. 展开更多
关键词 ship target recognition high-resolution range profile(HRRP) multi-scale fusion kernel sparse preserving projection(MSFKSPP) feature extraction dimensionality reduction
在线阅读 下载PDF
Bidirectional parallel multi-branch convolution feature pyramid network for target detection in aerial images of swarm UAVs 被引量:4
3
作者 Lei Fu Wen-bin Gu +3 位作者 Wei Li Liang Chen Yong-bao Ai Hua-lei Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第4期1531-1541,共11页
In this paper,based on a bidirectional parallel multi-branch feature pyramid network(BPMFPN),a novel one-stage object detector called BPMFPN Det is proposed for real-time detection of ground multi-scale targets by swa... In this paper,based on a bidirectional parallel multi-branch feature pyramid network(BPMFPN),a novel one-stage object detector called BPMFPN Det is proposed for real-time detection of ground multi-scale targets by swarm unmanned aerial vehicles(UAVs).First,the bidirectional parallel multi-branch convolution modules are used to construct the feature pyramid to enhance the feature expression abilities of different scale feature layers.Next,the feature pyramid is integrated into the single-stage object detection framework to ensure real-time performance.In order to validate the effectiveness of the proposed algorithm,experiments are conducted on four datasets.For the PASCAL VOC dataset,the proposed algorithm achieves the mean average precision(mAP)of 85.4 on the VOC 2007 test set.With regard to the detection in optical remote sensing(DIOR)dataset,the proposed algorithm achieves 73.9 mAP.For vehicle detection in aerial imagery(VEDAI)dataset,the detection accuracy of small land vehicle(slv)targets reaches 97.4 mAP.For unmanned aerial vehicle detection and tracking(UAVDT)dataset,the proposed BPMFPN Det achieves the mAP of 48.75.Compared with the previous state-of-the-art methods,the results obtained by the proposed algorithm are more competitive.The experimental results demonstrate that the proposed algorithm can effectively solve the problem of real-time detection of ground multi-scale targets in aerial images of swarm UAVs. 展开更多
关键词 Aerial images Object detection feature pyramid networks multi-scale feature fusion Swarm UAVs
在线阅读 下载PDF
多阶段重建内容协同优化的图像修复算法 被引量:1
4
作者 秦佳 白慧慧 +4 位作者 王梦丽 翟双姣 晋赞霞 秦品乐 曾建潮 《信号处理》 北大核心 2025年第2期325-337,共13页
随着数字图像技术的快速发展,图像已经成为日常生活学习中信息传递的重要载体之一。然而,由于错误传输、不当存储或者关键信息被遮挡等情况造成的图像信息丢失,往往影响人们对图像信息的理解和分析。近几年,大量渐进式图像修复算法被提... 随着数字图像技术的快速发展,图像已经成为日常生活学习中信息传递的重要载体之一。然而,由于错误传输、不当存储或者关键信息被遮挡等情况造成的图像信息丢失,往往影响人们对图像信息的理解和分析。近几年,大量渐进式图像修复算法被提出,通过由粗到精的修复方式逐步生成受损图像的缺失信息,使修复后的图像在视觉和内容上接近原始图像。然而,在这种渐进式图像修复的结构中,低渐进层的错误往往容易传递到高渐进层中,造成修复结果在图像内容上有误,难以达到人眼视觉要求。针对这一问题,本文提出了一种多阶段重建内容协同优化的图像修复算法(Image inpainting algorithm based on multi-stage reconstruction collaborative optimization,MSNet),在渐进修复中融入并行结构,通过对三阶段渐进层内容的协同优化,提高修复结果的准确性。具体来说,在该网络的初步修复阶段后,提出了一种并行的图像内容精细化修复模块(Parallel image content refinement module,PCRM),通过基于自注意力的U-Net和增强的残差网络两个分支并行地修复图像结构和细节信息。其中,基于自注意力的U-Net倾向于对图像的结构特征进行抽象提取,并通过Multi-Head自注意力机制进行全局恢复。而增强残差网络结构则通过优化特征值区分度的方式,提升重要细节信息的表征能力,使残差网络能够更关注于重要细节的恢复。在PCRM后,为了融合第二阶段所得的多个修复重建信息,细节-结构融合模块被提出来,将细节信息合理嵌入到结构中,提高多渐进层特征在空间表征上的兼容性,减少纹理与结构不统一所造成的图像视觉不连续问题,以生成更加符合客观现实的修复结果。实验结果表明,与现有的修复算法对比,本文提出的算法可以生成纹理更加清晰,视觉上更加逼真的结果。 展开更多
关键词 图像修复 特征融合 渐进式图像修复 图像复原
在线阅读 下载PDF
并行特征提取和渐进特征融合的计算机主板装配缺陷检测 被引量:1
5
作者 陈俊英 李朝阳 +1 位作者 黄汉涛 董戌泽 《光学精密工程》 EI CAS CSCD 北大核心 2024年第10期1622-1637,共16页
针对计算机主板装配缺陷检测中的元器件位置分布复杂、缺陷目标不显著及多尺度等问题,本文提出了一种并行特征提取和互交叉渐进特征融合的端到端的缺陷检测算法。首先,结合部分卷积和视觉Transformer提出了一种并行残差特征提取网络,利... 针对计算机主板装配缺陷检测中的元器件位置分布复杂、缺陷目标不显著及多尺度等问题,本文提出了一种并行特征提取和互交叉渐进特征融合的端到端的缺陷检测算法。首先,结合部分卷积和视觉Transformer提出了一种并行残差特征提取网络,利用部分卷积的低计算复杂度的优势提取局部特征,同时利用视觉Transformer的长距离建模能力扩大模型的感受野,增强网络的特征提取能力。其次,引入注意力机制和特征渐进融合机制,提出了一种多尺度注意力互交叉的渐进特征融合网络,增强检测模型的特征融合能力。在公开数据集上的实验结果表明,该算法的平均精度均值(mAP)达到了94.63%,相较于基线模型YOLOv5提升了4.62%,并优于其他几种先进模型,检测速度达到了25 FPS。实现了较好的检测精度与速度的平衡,为实际工业环境下计算机主板表面装配缺陷检测自动化和智能化的实现提供了一种快速、有效的方法。 展开更多
关键词 计算机主板装配缺陷检测 并行特征提取 渐进特征融合 视觉Transformer 部分卷积
在线阅读 下载PDF
基于渐进时空特征融合的红外弱小目标检测
6
作者 曾丹 卫建铭 +2 位作者 张俊杰 常亮 黄微 《红外与毫米波学报》 CSCD 北大核心 2024年第6期858-870,共13页
为避免现有多帧红外弱小目标检测算法在显式对齐多帧特征时产生的估计误差累积,并缓解网络降采样导致的目标特征丢失,提出了一种渐进时空特征融合网络,采用渐进时序特征累积模块隐式地聚合多帧信息,并利用多尺度空间特征融合模块增强浅... 为避免现有多帧红外弱小目标检测算法在显式对齐多帧特征时产生的估计误差累积,并缓解网络降采样导致的目标特征丢失,提出了一种渐进时空特征融合网络,采用渐进时序特征累积模块隐式地聚合多帧信息,并利用多尺度空间特征融合模块增强浅层细节特征与深层语义特征之间的交互。针对多帧红外弱小目标数据集稀缺的现状,构建了一个高度真实的半仿真数据集。与主流算法相比,提出的算法在所提出数据集和公开数据集上的检测概率分别提升了4.69%与4.22%。 展开更多
关键词 红外弱小目标检测 时空特征融合 渐进时序特征累积 多尺度空间特征融合 多帧数据集
在线阅读 下载PDF
融合渐进式策略的轻量化特征点提取与匹配方法
7
作者 杨潞霞 任佳乐 +3 位作者 张红瑞 韩睿 崔耀文 马永杰 《液晶与显示》 CAS CSCD 北大核心 2024年第11期1544-1556,共13页
针对基于SuperPoint网络的特征匹配方法在光照、姿态、角度等挑战下,特征点提取准确率低、计算参数量大的问题,提出了一种融合渐进式策略的轻量化特征点提取与匹配方法。首先,利用深度可分离卷积对SuperPoint网络进行结构调整,以降低模... 针对基于SuperPoint网络的特征匹配方法在光照、姿态、角度等挑战下,特征点提取准确率低、计算参数量大的问题,提出了一种融合渐进式策略的轻量化特征点提取与匹配方法。首先,利用深度可分离卷积对SuperPoint网络进行结构调整,以降低模型参数计算量;其次,在特征提取部分搭建注意力模块增强网络在空间上的特征提取能力,并设计渐进式多尺度特征融合模块捕获目标细节,增强特征的表达能力;最后,利用SuperGlue算法对所得到的特征点进行匹配。在Hpatches数据集上进行实验分析,实验结果表明,所提算法在光照变换场景下匹配平均准确率(mAP)和特征点重复度(Rep)达到了86%和70%,在视角变换场景下mAP和Rep达到了78%和68%。所提算法不仅在特征匹配中表现出一定的优势,同时将其应用于视频拼接中也获得了较好的效果。 展开更多
关键词 特征点提取 特征点匹配 轻量化 注意力机制 渐进式多尺度特征融合
在线阅读 下载PDF
渐进式特征增强的弱监督显著性目标检测
8
作者 李沼洁 朱恒亮 +1 位作者 毛国君 杨鑫 《计算机工程》 CAS CSCD 北大核心 2024年第12期233-244,共12页
针对多数弱监督显著性检测方法在复杂场景下容易出现目标结构缺损、边界粗糙等问题,提出一种渐进式特征增强的弱监督显著性检测算法。首先针对显著目标结构不完整问题,设计一种渐进式特征增强机制,主要包括双流语义增强模块和层次化自... 针对多数弱监督显著性检测方法在复杂场景下容易出现目标结构缺损、边界粗糙等问题,提出一种渐进式特征增强的弱监督显著性检测算法。首先针对显著目标结构不完整问题,设计一种渐进式特征增强机制,主要包括双流语义增强模块和层次化自适应特征聚合模块,通过复用这种机制可以捕获更丰富的图像特征;其次为获取清晰完整的目标边缘,提出边缘引导模块,可以生成高质量的显著目标边缘图;最后将得到的边缘对显著区域预测网络进行指导,以生成结构完整且边界平滑的检测结果。在5个公开数据集上的实验结果表明,相比经典的WSSA算法,该算法在PASCAL-S数据集上平均绝对误差(MAE)降低了21.32%,F-measure值提高了6.27%,优于大多数先进的弱监督显著性目标检测算法。 展开更多
关键词 弱监督 显著性目标检测 渐进式 特征聚合 边缘引导
在线阅读 下载PDF
基于渐进式学习与多尺度增强的客体视觉注意力估计方法
9
作者 丰江帆 何中鱼 《电子与信息学报》 EI CSCD 北大核心 2023年第4期1475-1484,共10页
视觉注意力机制已引起学界和产业界的广泛关注,但既有工作主要从场景观察者的视角进行注意力检测。然而,现实中不断涌现的智能应用场景需要从客体视角进行视觉注意力检测。例如,检测监控目标的视觉注意力有助于预测其后续行为,智能机器... 视觉注意力机制已引起学界和产业界的广泛关注,但既有工作主要从场景观察者的视角进行注意力检测。然而,现实中不断涌现的智能应用场景需要从客体视角进行视觉注意力检测。例如,检测监控目标的视觉注意力有助于预测其后续行为,智能机器人需要理解交互对象的意图才能有效互动。该文结合客体视觉注意力的认知机制,提出一种基于渐进式学习与多尺度增强的客体视觉注意力估计方法。该方法把客体视域视为几何结构和几何细节的组合,构建层次自注意力模块(HSAM)获取深层特征之间的长距离依赖关系,适应几何特征的多样性;并利用方向向量和视域生成器得到注视点的概率分布,构建特征融合模块将多分辨率特征进行结构共享、融合与增强,更好地获取空间上下文特征;最后构建综合损失函数来估计注视方向、视域和焦点预测的相关性。实验结果表明,该文所提方法在公开数据集和自建数据集上对客体视觉注意力估计的不同精度评价指标都优于目前的主流方法。 展开更多
关键词 客体视觉注意力 渐进式学习 层次自注意力 特征融合
在线阅读 下载PDF
雾霾条件下结合直接传输率图的车牌检测算法
10
作者 侯杰 王园宇 《计算机工程与设计》 北大核心 2023年第7期2132-2139,共8页
为提高雾霾条件下的车牌检测精度,提出一种无锚车牌检测算法。该算法不对雾霾图像进行去雾处理,避免图像失真,将雾霾图及反映其深度信息的直接传输率图作为两个并行的特征提取源来丰富学习特征,增强网络的深度感知能力。设计基于特征金... 为提高雾霾条件下的车牌检测精度,提出一种无锚车牌检测算法。该算法不对雾霾图像进行去雾处理,避免图像失真,将雾霾图及反映其深度信息的直接传输率图作为两个并行的特征提取源来丰富学习特征,增强网络的深度感知能力。设计基于特征金字塔网络FPN(feature pyramid networks)的并行FPN结构对两个特征提取源进行特征提取,处理网络多输入以及车牌多尺度变化的问题。提出融合空洞卷积和注意力机制的渐进融合结构,促进不同来源特征的协同表示和渐进融合。加入特征增强块降低空间特征损失,加强特征表达。实验结果表明,该算法能有效提高雾霾条件下的车牌检测精度。 展开更多
关键词 雾霾条件 车牌检测 直接传输率图 深度学习 特征金字塔网络 注意力机制 特征渐进融合
在线阅读 下载PDF
针对密集行人检测任务中多尺度目标的检测算法
11
作者 徐振峰 许云峰 +2 位作者 于子洲 梅卫 张妍 《计算机工程与应用》 2025年第17期304-316,共13页
在密集行人检测任务中目标的检测精度低,漏检和误检等一直是充满挑战的问题,导致此问题的原因是大多数的场景中存在大量多尺度的目标,多尺度的目标使得算法面临着尺度变化,从而使得算法的精度不高。针对此问题,提出了一种基于改进YOLOv5... 在密集行人检测任务中目标的检测精度低,漏检和误检等一直是充满挑战的问题,导致此问题的原因是大多数的场景中存在大量多尺度的目标,多尺度的目标使得算法面临着尺度变化,从而使得算法的精度不高。针对此问题,提出了一种基于改进YOLOv5s的多尺度行人检测网络(MPDNet)。网络改进包括三个方面:对于主干网络,在C3模块中添加了空间位置注意力模块,并引入改进的ViTv3Block模块,可以有效强化特征信息的提取;特征融合部分,在渐近特征金字塔网络(AFPN)的基础上进行了改进,改进后的AFPN可以在更少参数量和计算量的情况下进行跨层特征融合;在特征融合网络末端添加了空间加强多尺度注意力模块(SEMA),增强模型对目标的定位能力。通过分析实验结果,MPDNet在WiderPerson和CrowdHuman两个密集行人检测数据集上相较于YOLOv5s,AP50分别提升了4.2和3.2个百分点,AP50:95分别提升了5.0和3.9个百分点。MPDNet能够很好地完成复杂场景中密集行人检测任务。 展开更多
关键词 YOLOv5s 密集行人检测 渐进多尺度特征融合 目标检测 注意力机制
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部