特征选择是雷达目标识别流程中一个较为关键的环节,通过对原始特征集进行筛选,挑选出其中的优质特征构成新的特征子集,可以有效增加识别准确率,提升识别效率。为了提升开放环境下高分辨距离像(High Range Resolution Profile,HRRP)的识...特征选择是雷达目标识别流程中一个较为关键的环节,通过对原始特征集进行筛选,挑选出其中的优质特征构成新的特征子集,可以有效增加识别准确率,提升识别效率。为了提升开放环境下高分辨距离像(High Range Resolution Profile,HRRP)的识别性能,针对现有特征选择方法基于闭集假设,无法有效应对实际应用中存在库外目标导致的开集识别(Open Set Recognition,OSR)性能下降问题,本文提出了一种基于局部离群因子(Local Outlier Factor,LOF)的HRRP开集识别特征选择方法。首先,从原始HRRP中提取15维特征向量作为原始特征集;其次,该方法引入聚合性概念,并使用LOF作为其度量,通过评估特征子集的聚合性来保证其在OSR时具有最小的开放空间风险。同时,采用重心法评估特征子集的可分性,并使用前向搜索算法优化特征选择过程,确保所选特征子集为维数约束下的最优解。实验结果表明:利用所提方法选择的特征子集在开集环境下识别性能优于现有特征提取方法,提升了开集环境下高分辨距离像的识别性能。展开更多
Traditional manufacturing processes for lightweight curved profiles are often associated with lengthy procedures,high costs,low efficiency,and high energy consumption.In order to solve this problem,a new staggered ext...Traditional manufacturing processes for lightweight curved profiles are often associated with lengthy procedures,high costs,low efficiency,and high energy consumption.In order to solve this problem,a new staggered extrusion(SE)process was used to form the curved profile of AZ31 magnesium alloy in this paper.The study investigates the mapping relationship between the curvature,microstructure,and mechanical properties of the formed profiles by using different eccentricities of the die.Scanning electron microscopy(SEM)and electron backscatter diffraction techniques are employed to examine the effects of different eccentricity values(e)on grain morphology,recrystallization mechanisms,texture,and Schmid factors of the products.The results demonstrate that the staggered extrusion method promotes the deep refinement of grain size in the extruded products,with an average grain size of only 15%of the original billet,reaching 12.28μm.The tensile strength and elongation of the curved profiles after extrusion under the eccentricity value of 10 mm,20 mm and 30 mm are significantly higher than those of the billet,with the tensile strength is increased to 250,270,235 MPa,and the engineering strain elongation increased to 10.5%,12.1%,15.9%.This indicates that staggered extrusion enables curvature control of the profiles while improving their strength.展开更多
In order to extract the richer feature information of ship targets from sea clutter, and address the high dimensional data problem, a method termed as multi-scale fusion kernel sparse preserving projection(MSFKSPP) ba...In order to extract the richer feature information of ship targets from sea clutter, and address the high dimensional data problem, a method termed as multi-scale fusion kernel sparse preserving projection(MSFKSPP) based on the maximum margin criterion(MMC) is proposed for recognizing the class of ship targets utilizing the high-resolution range profile(HRRP). Multi-scale fusion is introduced to capture the local and detailed information in small-scale features, and the global and contour information in large-scale features, offering help to extract the edge information from sea clutter and further improving the target recognition accuracy. The proposed method can maximally preserve the multi-scale fusion sparse of data and maximize the class separability in the reduced dimensionality by reproducing kernel Hilbert space. Experimental results on the measured radar data show that the proposed method can effectively extract the features of ship target from sea clutter, further reduce the feature dimensionality, and improve target recognition performance.展开更多
传统的雷达高分辨距离像(High Resolution Range Profile,HRRP)序列识别方法依赖于人工提取特征,并且在使用现有的经典深度学习方法识别小数据集时存在梯度消失和过拟合问题,导致收敛速度慢,识别率低。针对上述问题,提出了一种基于注意...传统的雷达高分辨距离像(High Resolution Range Profile,HRRP)序列识别方法依赖于人工提取特征,并且在使用现有的经典深度学习方法识别小数据集时存在梯度消失和过拟合问题,导致收敛速度慢,识别率低。针对上述问题,提出了一种基于注意力机制的集成Inception网络模型,通过集成Attention-Inception单分支网络,实现了HRRP序列更深层次特征的提取;通过对模型的损失函数加入L2正则化,缓解小数据集在集成网络中的过拟合问题;利用Inception Ⅰ和Inception Ⅱ结构提取HRRP序列多尺度特征,并引入注意力机制计算特征序列的分配权重;加入残差结构,减缓了集成网络梯度消失问题。在预处理后的HRRP序列上进行实验结果表明,所提方法的目标识别率达到93.3%,并且与未去除噪声的HRRP序列相比目标识别率提高了14.67%。展开更多
This article investigates a multi-circular path-following formation control with reinforced transient profiles for nonholonomic vehicles connected by a digraph.A multi-circular formation controller endowed with the fe...This article investigates a multi-circular path-following formation control with reinforced transient profiles for nonholonomic vehicles connected by a digraph.A multi-circular formation controller endowed with the feature of spatial-temporal decoupling is devised for a group of vehicles guided by a virtual leader evolving along an implicit path,which allows for a circumnavigation on multiple circles with an anticipant angular spacing.In addition,notice that it typically imposes a stringent time constraint on time-sensitive enclosing scenarios,hence an improved prescribed performance control(IPPC)using novel tighter behavior boundaries is presented to enhance transient capabilities with an ensured appointed-time convergence free from any overshoots.The significant merits are that coordinated circumnavigation along different circles can be realized via executing geometric and dynamic assignments independently with modified transient profiles.Furthermore,all variables existing in the entire system are analyzed to be convergent.Simulation and experimental results are provided to validate the utility of suggested solution.展开更多
In the data-driven era of the internet and business environments,constructing accurate user profiles is paramount for personalized user understanding and classification.The traditional TF-IDF algorithm has some limita...In the data-driven era of the internet and business environments,constructing accurate user profiles is paramount for personalized user understanding and classification.The traditional TF-IDF algorithm has some limitations when evaluating the impact of words on classification results.Consequently,an improved TF-IDF-K algorithm was introduced in this study,which included an equalization factor,aimed at constructing user profiles by processing and analyzing user search records.Through the training and prediction capabilities of a Support Vector Machine(SVM),it enabled the prediction of user demographic attributes.The experimental results demonstrated that the TF-IDF-K algorithm has achieved a significant improvement in classification accuracy and reliability.展开更多
文摘特征选择是雷达目标识别流程中一个较为关键的环节,通过对原始特征集进行筛选,挑选出其中的优质特征构成新的特征子集,可以有效增加识别准确率,提升识别效率。为了提升开放环境下高分辨距离像(High Range Resolution Profile,HRRP)的识别性能,针对现有特征选择方法基于闭集假设,无法有效应对实际应用中存在库外目标导致的开集识别(Open Set Recognition,OSR)性能下降问题,本文提出了一种基于局部离群因子(Local Outlier Factor,LOF)的HRRP开集识别特征选择方法。首先,从原始HRRP中提取15维特征向量作为原始特征集;其次,该方法引入聚合性概念,并使用LOF作为其度量,通过评估特征子集的聚合性来保证其在OSR时具有最小的开放空间风险。同时,采用重心法评估特征子集的可分性,并使用前向搜索算法优化特征选择过程,确保所选特征子集为维数约束下的最优解。实验结果表明:利用所提方法选择的特征子集在开集环境下识别性能优于现有特征提取方法,提升了开集环境下高分辨距离像的识别性能。
基金Project(JQ2022E004)supported by the Natural Science Foundation of Heilongjiang Province,China。
文摘Traditional manufacturing processes for lightweight curved profiles are often associated with lengthy procedures,high costs,low efficiency,and high energy consumption.In order to solve this problem,a new staggered extrusion(SE)process was used to form the curved profile of AZ31 magnesium alloy in this paper.The study investigates the mapping relationship between the curvature,microstructure,and mechanical properties of the formed profiles by using different eccentricities of the die.Scanning electron microscopy(SEM)and electron backscatter diffraction techniques are employed to examine the effects of different eccentricity values(e)on grain morphology,recrystallization mechanisms,texture,and Schmid factors of the products.The results demonstrate that the staggered extrusion method promotes the deep refinement of grain size in the extruded products,with an average grain size of only 15%of the original billet,reaching 12.28μm.The tensile strength and elongation of the curved profiles after extrusion under the eccentricity value of 10 mm,20 mm and 30 mm are significantly higher than those of the billet,with the tensile strength is increased to 250,270,235 MPa,and the engineering strain elongation increased to 10.5%,12.1%,15.9%.This indicates that staggered extrusion enables curvature control of the profiles while improving their strength.
基金supported by the National Natural Science Foundation of China (62271255,61871218)the Fundamental Research Funds for the Central University (3082019NC2019002)+1 种基金the Aeronautical Science Foundation (ASFC-201920007002)the Program of Remote Sensing Intelligent Monitoring and Emergency Services for Regional Security Elements。
文摘In order to extract the richer feature information of ship targets from sea clutter, and address the high dimensional data problem, a method termed as multi-scale fusion kernel sparse preserving projection(MSFKSPP) based on the maximum margin criterion(MMC) is proposed for recognizing the class of ship targets utilizing the high-resolution range profile(HRRP). Multi-scale fusion is introduced to capture the local and detailed information in small-scale features, and the global and contour information in large-scale features, offering help to extract the edge information from sea clutter and further improving the target recognition accuracy. The proposed method can maximally preserve the multi-scale fusion sparse of data and maximize the class separability in the reduced dimensionality by reproducing kernel Hilbert space. Experimental results on the measured radar data show that the proposed method can effectively extract the features of ship target from sea clutter, further reduce the feature dimensionality, and improve target recognition performance.
基金supported in part by the National Natural Science Foundation of China under Grant Nos.62173312 and 61803348in part by the National Major Scientific Instruments Development Project under Grant No.61927807+3 种基金in part by the Program for the Innovative Talents of Higher Education Institutions of ShanxiShanxi Province Science Foundation for Excellent Youthsin part by the Shanxi"1331 Project"Key Subjects Construction(1331KSC)in part by Graduate Innovation Project of Shanxi Province under Grant No.2021Y617。
文摘This article investigates a multi-circular path-following formation control with reinforced transient profiles for nonholonomic vehicles connected by a digraph.A multi-circular formation controller endowed with the feature of spatial-temporal decoupling is devised for a group of vehicles guided by a virtual leader evolving along an implicit path,which allows for a circumnavigation on multiple circles with an anticipant angular spacing.In addition,notice that it typically imposes a stringent time constraint on time-sensitive enclosing scenarios,hence an improved prescribed performance control(IPPC)using novel tighter behavior boundaries is presented to enhance transient capabilities with an ensured appointed-time convergence free from any overshoots.The significant merits are that coordinated circumnavigation along different circles can be realized via executing geometric and dynamic assignments independently with modified transient profiles.Furthermore,all variables existing in the entire system are analyzed to be convergent.Simulation and experimental results are provided to validate the utility of suggested solution.
文摘In the data-driven era of the internet and business environments,constructing accurate user profiles is paramount for personalized user understanding and classification.The traditional TF-IDF algorithm has some limitations when evaluating the impact of words on classification results.Consequently,an improved TF-IDF-K algorithm was introduced in this study,which included an equalization factor,aimed at constructing user profiles by processing and analyzing user search records.Through the training and prediction capabilities of a Support Vector Machine(SVM),it enabled the prediction of user demographic attributes.The experimental results demonstrated that the TF-IDF-K algorithm has achieved a significant improvement in classification accuracy and reliability.