In the early time of oilfield development, insufficient production data and unclear understanding of oil production presented a challenge to reservoir engineers in devising effective development plans. To address this...In the early time of oilfield development, insufficient production data and unclear understanding of oil production presented a challenge to reservoir engineers in devising effective development plans. To address this challenge, this study proposes a method using data mining technology to search for similar oil fields and predict well productivity. A query system of 135 analogy parameters is established based on geological and reservoir engineering research, and the weight values of these parameters are calculated using a data algorithm to establish an analogy system. The fuzzy matter-element algorithm is then used to calculate the similarity between oil fields, with fields having similarity greater than 70% identified as similar oil fields. Using similar oil fields as sample data, 8 important factors affecting well productivity are identified using the Pearson coefficient and mean decrease impurity(MDI) method. To establish productivity prediction models, linear regression(LR), random forest regression(RF), support vector regression(SVR), backpropagation(BP), extreme gradient boosting(XGBoost), and light gradient boosting machine(Light GBM) algorithms are used. Their performance is evaluated using the coefficient of determination(R^(2)), explained variance score(EV), mean squared error(MSE), and mean absolute error(MAE) metrics. The Light GBM model is selected to predict the productivity of 30 wells in the PL field with an average error of only 6.31%, which significantly improves the accuracy of the productivity prediction and meets the application requirements in the field. Finally, a software platform integrating data query,oil field analogy, productivity prediction, and knowledge base is established to identify patterns in massive reservoir development data and provide valuable technical references for new reservoir development.展开更多
Forest net primary productivity(NPP)constitutes a key flux within the terrestrial ecosystem carbon cycle and serves as a significant indicator of the forests carbon sequestration capacity,which is closely related to f...Forest net primary productivity(NPP)constitutes a key flux within the terrestrial ecosystem carbon cycle and serves as a significant indicator of the forests carbon sequestration capacity,which is closely related to forest age.Despite its significance,the impact of forest age on NPP is often ignored in future NPP projections.Here,we mapped forest age in Hunan Province at a 30-m resolution utilizing a combination of Landsat time series stack(LTSS),national forest inventory(NFI)data,and the relationships between height and age.Subsequently,NPP was derived from NFI data and the relationships between NPP and age was built for various forest types.Then forest NPP was predicted based on the NPP-age relationships under three future scenarios,assessing the impact of forest age on NPP.Our findings reveal substantial variations in forest NPP in Hunan Province under three future scenarios:under the age-only scenario,NPP peaks in 2041(133.56TgC·yr^(−1)),while NPP peaks three years later in 2044(141.14TgC·yr^(−1))under the natural development scenario.The maximum afforestation scenario exhibits the most rapid increase in NPP,with peaking in 2049(197.95TgC·yr^(−1)).However,with the aging of the forest,NPP is projected to then decrease by 7.54%,6.07%,and 7.47%in 2060,and 20.05%,19.74%,and 28.38%in 2100,respectively,compared to their peaks under the three scenarios.This indicates that forest NPP will continue to decline soon.Controlling the age structure of forests through selective logging,afforestation and reforestation,and encouraging natural regeneration after disturbance could mitigate this declining trend in forest NPP,but implications of these measures on the full forest carbon balance remain to be studied.Insights from the future multi-scenarios are expected to provide data to support sustainable forest management and national policy development,which will inform the achievement of carbon neutrality goals by 2060.展开更多
An improved understanding of biodiversity-productivity relationships(BPRs)along environmental gradients is crucial for effective ecosystem management and biodiversity conservation.The stress-gradient hypothesis sugges...An improved understanding of biodiversity-productivity relationships(BPRs)along environmental gradients is crucial for effective ecosystem management and biodiversity conservation.The stress-gradient hypothesis suggests that BPRs are stronger in stressful environments compared to more favorable conditions.However,there is limited knowledge regarding the variation of BPRs along elevational gradients and their generality across different landscapes.To study how BPRs change with elevation,we harnessed inventory data on 6,431 trees from152 plots surveyed twice in eight to ten year intervals in mountain forests of temperate Europe and subtropical Asia.We quantified the relationship between aboveground productivity and different biodiversity measures,including taxonomic,functional,and phylogenetic diversity.To elucidate the processes underlying BPRs,we studied the variation of different functional traits along elevation across landscapes.We found no general pattern of BPRs across landscapes and elevations.Relationships were neutral for all biodiversity measures in temperate forests,and negative for taxonomic and functional diversity in subtropical forests.BPRs were largely congruent between taxonomic,functional and phylogenetic diversity.We found only weak support for the stress-gradient hypothesis,with BPRs turning from negative to positive(effect not significant)close to the tree line in subtropical forests.In temperate forests,however,elevation patterns were strongly modulated by species identity effects as influenced by specific traits.The effect of traits such as community-weighted mean of maximum plant height and wood density on productivity was congruent across landscapes.Our study highlights the context-dependence of BPRs across elevation gradients and landscapes.Species traits are key modulating factors of BPRs and should be considered more explicitly in studies of the functional role of biodiversity.Furthermore,our findings highlight that potential trade-offs between conserving biodiversity and fostering ecosystem productivity exist,which require more attention in policy and management.展开更多
An improved Carnegie Ames Stanford Approach model (CASA model) was used to estimate the net primary productivity (NPP) of the Northeast China Transect (NECT) every month from 1982 to 2000. The spatial-temporal d...An improved Carnegie Ames Stanford Approach model (CASA model) was used to estimate the net primary productivity (NPP) of the Northeast China Transect (NECT) every month from 1982 to 2000. The spatial-temporal distribution of NPP along NECT and its response to climatic change were also analyzed. Results showed that the change tendency of NPP spatial distribution in NECT is quite similar to that of precipitation and their spatial correlation coefficient is up to 0.84 (P 〈 0.01). The inter-annual variation of NPP in NECT is mainly affected by the change of the aestival NPP every year, which accounts for 67.6% of the inter-annual increase in NPP and their spatial correlation coefficient is 0.95 (P 〈 0.01). The NPP in NECT is mainly cumulated between May and September, which accounts for 89.8% of the annual NPP. The NPP in summer (June to August) accounts for 65.9% of the annual NPP and is the lowest in winter. Recent climate changes have enhanced plant growth in NECT. The mean NPP increased 14.3% from 1980s to 1990s. The inter-annual linear trend of NPP is 4.6 gC·m^-2·a^-1, and the relative trend is 1.17%, which owns mainly to the increasing temperature.展开更多
Biomass and net primary productivity (NPP) are two important parameters in determining ecosystem carbon pool and carbon sequestration. The biomass storage and NPP in desert shrubland of Artemisia ordosica on Ordos P...Biomass and net primary productivity (NPP) are two important parameters in determining ecosystem carbon pool and carbon sequestration. The biomass storage and NPP in desert shrubland of Artemisia ordosica on Ordos Plateau were investigated with method of harvesting standard size shrub in the growing season (June-October) of 2006. Results indicated that above- and belowground biomass of the same size shrubs showed no significant variation in the growing season (p〉0.1), but annual biomass varied significantly (p〈 0.01). In the A. ordosica community, shrub biomass storage was 699.76-1246.40 g.m^-2 and annual aboveground NPP was 224.09 g-m^-2·a^-1. Moreover, shrub biomass and NPP were closely related with shrub dimensions (cover and height) and could be well predicted by shrub volume using power regression.展开更多
The exotic Sonneratia apetala in Leizhou Peninsula, has shown outstanding fast-growing ability in restored mangrove forests, at the middle and high tide intertidal zone, with year-round fresh water input from drainage...The exotic Sonneratia apetala in Leizhou Peninsula, has shown outstanding fast-growing ability in restored mangrove forests, at the middle and high tide intertidal zone, with year-round fresh water input from drainage. By setting plot and selecting standard tree, investigation and measurement on height growth, diameter growth, biomass, productivity, and so on, were made in a S. apetala plantation at age of six at Lanbei, Fucheng, Leizhou Peninsula in May 2001. The investigating results showed that the mean annual height growth of plantation was 2.03 m and mean annual growth of diameter at breast height (DBH) was 2.35 cm. There exists a significant correlation between the diameter at ground surface (DGS) and DBH. The average biomass of a single standard tree in dry weight was 95.647 kg/m2. A ratio of above-ground biomass to under-ground biomass was 1.60. The stand biomass of unit area was 22.955 kg/m2, singletree wood volume was 88.23 dm3, and the annual wood volume productivity (PA) of the same year was 0.407. The forest energy accumulation was 424.851 MJ/m2, with annual solar energy fixing rate of 40.68 ×10-7%. It is concluded that S. apetala species had characteristics of outstanding high biomass accumulation and could be used as coastal planting tree species in southern China.展开更多
Terrestrial carbon cycle and the global atmospheric CO2 budget are important foci in global climate change research. Simulating net primary productivity (NPP) of terrestrial ecosystems is important for carbon cycle ...Terrestrial carbon cycle and the global atmospheric CO2 budget are important foci in global climate change research. Simulating net primary productivity (NPP) of terrestrial ecosystems is important for carbon cycle research. In this study, a plant-atmosphere-soil continuum nitrogen (N) cycling model was developed and incorporated into the Boreal Ecosystem Productivity Simulator (BEPS) model. With the established database (leaf area index, land cover, daily meteorology data, vegetation and soil) at a 1 km resolution, daily maps of NPP for Lantsang valley in 2007 were produced, and the spatial-temporal patterns of NPP and mechanisms of its responses to soil N level were further explored. The total NPP and mean NPP of Lantsang valley in 2007 were 66.5 Tg C and 416 g?m-2?a-1 C, respectively. In addition, statistical analysis of NPP of different land cover types was conducted and investigated. Compared with BEPS model (without considering nitrogen effect), it was inferred that the plant carbon fixing for the upstream of Lantsang valley was also limited by soil available nitrogen besides temperature and precipitation. However, nitrogen has no evident limitation to NPP accumulation of broadleaf forest, which mainly distributed in the downstream of Lantsang valley.展开更多
Climate warming is expected to influence forest growth,composition and distribution.However,accurately estimating and predicting forest biomass,potential productivity or forest growth is still a challenge for forest m...Climate warming is expected to influence forest growth,composition and distribution.However,accurately estimating and predicting forest biomass,potential productivity or forest growth is still a challenge for forest managers dealing with land-use at the stand to regional levels.In the present study,we predicted the potential productivity(PP)of forest under current and future climate scenarios(RCP2.6,RCP4.5,RCP6.0 and RCP8.5)in Jilin province,northeastern China by using Paterson’s Climate Vegetation and Productivity(CVP)index model.The PP was validated by comparing it with the mean and maximum net primary production calculated from light energy utilization(GLM_PEM).Our results indicated that using the CVP index model is partially valid for predicting the potential forest productivity in northeastern China.PP exhibited obvious spatial heterogeneity varying from 4.6 to 8.9 m3 ha-1 year-1 with an increasing tendency from northwest to southeast driven by the precipitation across the region.The number of vegetation-active months,precipitation and insolation coefficient were identified as the primary factors affecting PP,but no significant relationship was found for warmest temperature or temperature fluctuation.Under future climate scenarios,PP across the Jilin Province is expected to increase from 1.38%(RCP2.6 in 2050)to 15.30%(RCP8.5 in 2070),especially in the eastern Songnen Plain(SE)for the RCP8.5 scenarios.展开更多
Forest Potential Productivity (FPP) of 8 counties in Tianshan was cal culated, and the potential timber output of these counties was analyzed with Mia mi Model and Thornthwaite Memorial Model. Research results showed ...Forest Potential Productivity (FPP) of 8 counties in Tianshan was cal culated, and the potential timber output of these counties was analyzed with Mia mi Model and Thornthwaite Memorial Model. Research results showed that annual av erage output of present stand in Tianshan Forest Region was 3.7 m3/(hm2. a), whi ch reached only 49% of average FPP.展开更多
Purpose: This paper aims to investigate the scientific productivity of China's science system. Design/methodology/approach: This paper employs the Malmquist productivity index(MPI) based on Data Envelopment Analys...Purpose: This paper aims to investigate the scientific productivity of China's science system. Design/methodology/approach: This paper employs the Malmquist productivity index(MPI) based on Data Envelopment Analysis(DEA).Findings: The results reveal that the overall efficiency of Chinese universities increased significantly from 2009 to 2016, which is mainly driven by technological progress. From the perspective of the functions of higher education, research and transfer activities perform better than the teaching activities.Research limitations: As an implication, the indicator selection mechanism, investigation period and the MPI model can be further extended in the future research.Practical implications: The results indicate that Chinese education administrative departments should take actions to guide and promote the teaching activities and formulate reasonable resource allocation regulations to reach the balanced development in Chinese universities.Originality/value: This paper selects 58 Chinese universities and conducts a quantified measurement during the period 2009–2016. Three main functional activities of universities(i.e. teaching, researching, and application) are innovatively categorized into different schemes, and we calculate their performance, respectively.展开更多
From 2002 to 2003, based on the investigation of sample plots and stem analysis of remained plantation communities in the areas of returning farmland to forest in the 1980s in Datong County, Qinghai Province, this pap...From 2002 to 2003, based on the investigation of sample plots and stem analysis of remained plantation communities in the areas of returning farmland to forest in the 1980s in Datong County, Qinghai Province, this paper studies tree productivity and moisture potential productivity of six types of plantations on the land of returning farmland to forest, such as green poplar (Populus cathayana Rehd.) and shrub mixed forest, Asia white birch (Betula platyphylla) and China spruce (Picea asperata) mixed forest, Dahurian larch (Larix gmelinii) pure forest, China spruce pure forest and Asia white birch pure forest and so on. The results show that: in sub-humid region of Loess Plateau, 3 000 trees per hm2 is a proper standard of planting density. Under current condition, the productivity index of green poplar and shrub mixed forest, Asia white birch pure forest, China spruce pure forest, and Asia white birch and China spruce mixed forest with the density of 2 1003 333 trees per hm2 can serve as potential productivity standard of actual biomass of arbor established forest. In sub-humid area, Thornthwaite Model is adopted to estimate plant climate potential productivity, which is about 8 462 kghm2穉1. The actual potential water productive efficiency of Purplecone spruce (Picea purpurea) and Asia white birch pure established forest are 17.22 and 22.14 kgmm1hm2穉1 respectively, and that of green poplar and shrub mixed established forest, and Asia white birch and China spruce mixed established forest are 21.14 and 19.09 kgmm1hm2穉1 respectively. The potential productivity of green poplar and shrub mixed forest, Asia white birch and China spruce mixed forest, China spruce pure forest and Asia white birch pure forest which have grown into forest with the density of 3 000 trees per hm2 have attained or been close to that of local climax community, which is local maximum tree productivity at present. These types of forestation models are the developing direction of the returning farmland to forest project.展开更多
Using the large-scale thick 4# coal seam from the Mid-Jurassic in the southern Ordos Basin as an example, this paper studied the net primary productivity(NPP) level of the Mid-Jurassic peatland, and discussed its cont...Using the large-scale thick 4# coal seam from the Mid-Jurassic in the southern Ordos Basin as an example, this paper studied the net primary productivity(NPP) level of the Mid-Jurassic peatland, and discussed its control factors. Geophysical logging signals were used for a spectrum analysis to obtain the Milankovitch cycle parameters in coal seam. These were then used to calculate the accumulation rate of the residual carbon in 4# coal seam. The carbon loss can be calculated according to the density and residual carbon content of 4# coal seam. Then, the total carbon accumulation rate of the peatland was further derived, and the NPP of peatland was determined. The results show that the NPP of MidJurassic peatland is higher than that of Holocene at the same latitude. Comprehensive analysis indicates that the temperature, carbon dioxide and oxygen levels in atmosphere are the main control factors of the NPP of Mid-Jurassic peatland.展开更多
Canadian boreal mixedwood forests are extensive,with large potential for carbon sequestration and storage;thus,knowledge of their carbon stocks at different stand ages is needed to adapt forest management practices to...Canadian boreal mixedwood forests are extensive,with large potential for carbon sequestration and storage;thus,knowledge of their carbon stocks at different stand ages is needed to adapt forest management practices to help meet climate-change mitigation goals.Carbon stocks were quantified at three Ontario boreal mixedwood sites.A harvested stand,a juvenile stand replanted with spruce seedlings and a mature stand had total carbon stocks(±SE)of 133±13 at age 2,130±13 at age 25,and 207±15 Mg C ha^-1 at age 81 years.At the clear-cut site,stocks were reduced by about 40%or 90 Mg C ha^-1 at harvest.Vegetation held 27,34 and 62%of stocks,while detritus held 34,29 and 13%of stocks at age 2,25 and 81,respectively.Mineral soil carbon stocks averaged 51 Mg C ha^-1,and held 38,37 and 25%of stocks.Aboveground net primary productivity(±SE)in the harvested and juvenile stand was 2.1±0.2 and 3.7±0.3 Mg C ha^-1 per annum(p.a.),compared to 2.6±2.5 Mg C ha^-1 p.a.in the mature stand.The mature canopies studied had typical boreal mixedwood composition and mean carbon densities of 208 Mg C ha^-1,which is above average for managed Canadian boreal forest ecosystems.A comparison of published results from Canadian boreal forest ecosystems showed that carbon stocks in mixedwood stands are typically higher than coniferous stands at all ages,which was also true for stocks in vegetation and detritus.Also,aboveground net primary productivity was typically found to be higher in mixedwood than in coniferous boreal forest stands over a range of ages.Measurements from this study,together with those published from the other boreal forest stands demonstrate the potential for enhanced carbon sequestration through modified forest management practices to take advantage of Canadian boreal mixedwood stand characteristics.展开更多
In this paper, the biomass productivity and nutrient cycling in an agroforestry system of coconut (Cocus nucifera) interplanted with pineapple (Ananas comosus) had been studied. The result showed that the biomass prod...In this paper, the biomass productivity and nutrient cycling in an agroforestry system of coconut (Cocus nucifera) interplanted with pineapple (Ananas comosus) had been studied. The result showed that the biomass productivity of this ecosystem was 47 460 kg...hm2...a?1, which was 4.3 times as much as that of pure coconut plantation. In the biological cycling of N, P. K elements, the total annual retention was 559.470 kg...hm?2, the annual return was 410.745 kg...hm?2, the annual uptake was 970.475 kg...hm?2, respectively. The average circulation rate in three nutrient elements (N, P, K) was 42.32%, which was 27.53% more than that in pure coconut stands. Coconut interplanted with pineapple was proved to be one of optimum cultural patterns, which had the higher biomass productivity, and better usage efficiency of environment resources in tropical areas.展开更多
Based on regional CBM geological characteristics and drainage data of three typical Coalbed Methane(CBM) wells in the southern Qinshui Basin,history matching,productivity prediction and factor analysis of gas producti...Based on regional CBM geological characteristics and drainage data of three typical Coalbed Methane(CBM) wells in the southern Qinshui Basin,history matching,productivity prediction and factor analysis of gas production control are conducted by using COMET3 reservoir modeling software.The results show that in the next 20 years,the cumulative and average daily gas production of the QN01 well are expected to be 800×104 m3 and 1141.1 m3/d,for the QN02 well 878×104 m3 and 1202.7 m3/d and 97.5×104 m3 and 133.55 m3/d for the QN03 well.Gas content and reservoir pressure are the key factors controlling gas production in the area;coal thickness,permeability and porosity are less important;the Langmuir volume,Langmuir pressure and adsorption time have relatively small effect.In the process of CBM recovery,the material source and driving force are the key features affecting gas productivity,while the permeation process is relatively important and the desorption process has some impact on gas recovery.展开更多
Background:Recent warming is affecting species composition and species areal distribution of many regions.However,although most treeline studies have estimated the rates of forest expansion into tundra,still little is...Background:Recent warming is affecting species composition and species areal distribution of many regions.However,although most treeline studies have estimated the rates of forest expansion into tundra,still little is known about the long-term dynamic of stand productivity at the forest-tundra intersection.Here,we make use of tree-ring data from 350 larch(Larix sibirica Ledeb.)and spruce(Picea obovata Ledeb.)sampled along the singular altitudinal treeline ecotone at the Polar Urals to assess the dynamic of stand establishment and productivity,and link the results with meteorological observations to identify the main environmental drivers.Results:The analysis of stand instalment indicated that more than 90%of the living trees appeared after 1900.During this period,the stand became denser and moved 50m upward,while in recent decades the trees of both species grew faster.The maximum afforestation occurred in the last decades of the twentieth century,and the large number of encountered saplings indicates that the forest is still expanding.The upward shift coincided with a slight increase of May-August and nearly doubling of September-April precipitation while the increase in growth matched with an early growth season warming(June+0.27°C per decade since 1901).This increase in radial growth combined with the stand densification led to a 6-90 times increase of biomass since 1950.Conclusion:Tree-ring based twentieth century reconstruction at the treeline ecotone shows an ongoing forest densification and expansion accompanied by an increased growth.These changes are driven by climate change mechanism,whereby the leading factors are the significant increase in May-June temperatures and precipitation during the dormant period.Exploring of phytomass accumulation mechanisms within treeline ecotone is valuable for improving our understanding of carbon dynamics and the overall climate balance in current treeline ecosystems and for predicting how these will be altered by global change.展开更多
Background: Forest productivity has a pivotal role in human well-being. Vegetation quantity, niche complementarity, mass-ratio, and soil resources are alternative/complementary ecological mechanisms driving productivi...Background: Forest productivity has a pivotal role in human well-being. Vegetation quantity, niche complementarity, mass-ratio, and soil resources are alternative/complementary ecological mechanisms driving productivity. One challenge in current forest management depends on identifying and manipulating these mechanisms to enhance productivity. This study assessed the extent to which these mechanisms control aboveground biomass productivity(AGBP) of a Chilean mediterranean-type matorral. AGBP measured as tree aboveground biomass changes over a 7-years period, was estimated for twelve 25 m × 25 m plots across a wide range of matorral compositions and structures. Variables related to canopy structure, species and functional diversity, species and functional dominance, soil texture, soil water and soil nitrogen content were measured as surrogates of the four mechanisms proposed. Linear regression models were used to test the hypotheses. A multimodel inference based on the Akaike’s information criterion was used to select the best models explaining AGBP and for identifying the relative importance of each mechanism.Results: Vegetation quantity(tree density) and mass-ratio(relative biomass of Cryptocarya alba, a conservative species) were the strongest drivers increasing AGBP, while niche complementarity(richness species) and soil resources(sand, %) had a smaller effect either decreasing or increasing AGBP, respectively. This study provides the first assessment of alternative mechanisms driving AGBP in mediterranean forests of Chile. There is strong evidence suggesting that the vegetation quantity and mass-ratio mechanisms are key drivers of AGBP, such as in other tropical and temperate forests. However, in contrast with other studies from mediterranean-type forests, our results show a negative effect of species diversity and a small effect of soil resources on AGBP.Conclusion: AGBP in the Chilean matorral depends mainly on the vegetation quantity and mass-ratio mechanisms.The findings of this study have implications for matorral restoration and management for the production of timber and non-timber products and carbon sequestration.展开更多
Background: Global warming has brought many negative impacts on terrestrial ecosystems, which makes the vulnerability of ecosystems one of the hot issues in current ecological research. Here, we proposed an assessment...Background: Global warming has brought many negative impacts on terrestrial ecosystems, which makes the vulnerability of ecosystems one of the hot issues in current ecological research. Here, we proposed an assessment method based on the IPCC definition of vulnerability. The exposure to future climate was characterized using a moisture index(MI) that integrates the effects of temperature and precipitation. Vegetation stability, defined as the proportion of intact natural vegetation that remains unchanged under changing climate, was used together with vegetation productivity trend to represent the sensitivity and adaptability of ecosystems. Using this method, we evaluated the vulnerability of ecosystems in Southwestern China under two future representative concentration pathways(RCP 4.5 and RCP 8.5) with MC2 dynamic global vegetation model.Results:(1) Future(2017–2100) climate change will leave 7.4%(under RCP 4.5) and 57.4% of(under RCP 8.5) of areas under high or very high vulnerable climate exposure;(2) in terms of vegetation stability, nearly 45% of the study area will show high or very high vulnerability under both RCPs. Beside the impacts of human disturbance on natural vegetation coverage(vegetation intactness), climate change will cause obvious latitudinal movements in vegetation distribution, but the direction of movements under two RCPs were opposite due to the difference in water availability;(3) vegetation productivity in most areas will generally increase and remain a low vulnerability in the future;(4) an assessment based on the above three aspects together indicated that future climate change will generally have an adverse impact on all ecosystems in Southwestern China, with non-vulnerable areas account for only about 3% of the study area under both RCPs. However, compared with RCP 4.5, the areas with mid-and highvulnerability under RCP 8.5 scenario increased by 13% and 16%, respectively.Conclusion: Analyses of future climate exposure and projected vegetation distribution indicate widespread vulnerability of ecosystems in Southwestern China, while vegetation productivity in most areas will show an increasing trend to the end of twenty-first century. Based on new climate indicators and improved vulnerability assessment rules, our method provides an extra option for a more comprehensive evaluation of ecosystem vulnerability, and should be further tested at larger spatial scales in order to provide references for regional, or even global, ecosystem conservation works.展开更多
Background:Process-based models are widely used to simulate forest productivity,but complex parameterization and calibration challenge the application and development of these models.Sensitivity analysis of numerous p...Background:Process-based models are widely used to simulate forest productivity,but complex parameterization and calibration challenge the application and development of these models.Sensitivity analysis of numerous parameters is an essential step in model calibration and carbon flux simulation.However,parameters are not dependent on each other,and the results of sensitivity analysis usually vary due to different forest types and regions.Hence,global and representative sensitivity analysis would provide reliable information for simple calibration.Methods:To determine the contributions of input parameters to gross primary productivity(GPP)and net primary productivity(NPP),regression analysis and extended Fourier amplitude sensitivity testing(EFAST)were conducted for Biome-BGCMuSo to calculate the sensitivity index of the parameters at four observation sites under climate gradient from ChinaFLUX.Results:Generally,GPP and NPP were highly sensitive to C:Nleaf(C:N of leaves),Wint(canopy water interception coefficient),k(canopy light extinction coefficient),FLNR(fraction of leaf N in Rubisco),MRpern(coefficient of linear relationship between tissue N and maintenance respiration),VPDf(vapor pressure deficit complete conductance reduction),and SLA1(canopy average specific leaf area in phenological phase 1)at all observation sites.Various sensitive parameters occurred at four observation sites within different climate zones.GPP and NPP were particularly sensitive to FLNR,SLA1 and Wint,and C:Nleaf in temperate,alpine and subtropical zones,respectively.Conclusions:The results indicated that sensitivity parameters of China's forest ecosystems change with climate gradient.We found that parameter calibration should be performed according to plant functional type(PFT),and more attention needs to be paid to the differences in climate and environment.These findings contribute to determining the target parameters in field experiments and model calibration.展开更多
It is known that there is a discrepancy between field data and the results predicted from the previous equations derived by simplifying three-dimensional(3-D) flow into two-dimensions(2-D).This paper presents a ne...It is known that there is a discrepancy between field data and the results predicted from the previous equations derived by simplifying three-dimensional(3-D) flow into two-dimensions(2-D).This paper presents a new steady-state productivity equation for horizontal wells in bottom water drive gas reservoirs.Firstly,the fundamental solution to the 3-D steady-state Laplace equation is derived with the philosophy of source and the Green function for a horizontal well located at the center of the laterally infinite gas reservoir.Then,using the fundamental solution and the Simpson integral formula,the average pseudo-pressure equation and the steady-state productivity equation are achieved for the horizontal section.Two case-studies are given in the paper,the results calculated from the newly-derived formula are very close to the numerical simulation performed with the Canadian software CMG and the real production data,indicating that the new formula can be used to predict the steady-state productivity of such horizontal gas wells.展开更多
基金supported by the National Natural Science Fund of China (No.52104049)the Science Foundation of China University of Petroleum,Beijing (No.2462022BJRC004)。
文摘In the early time of oilfield development, insufficient production data and unclear understanding of oil production presented a challenge to reservoir engineers in devising effective development plans. To address this challenge, this study proposes a method using data mining technology to search for similar oil fields and predict well productivity. A query system of 135 analogy parameters is established based on geological and reservoir engineering research, and the weight values of these parameters are calculated using a data algorithm to establish an analogy system. The fuzzy matter-element algorithm is then used to calculate the similarity between oil fields, with fields having similarity greater than 70% identified as similar oil fields. Using similar oil fields as sample data, 8 important factors affecting well productivity are identified using the Pearson coefficient and mean decrease impurity(MDI) method. To establish productivity prediction models, linear regression(LR), random forest regression(RF), support vector regression(SVR), backpropagation(BP), extreme gradient boosting(XGBoost), and light gradient boosting machine(Light GBM) algorithms are used. Their performance is evaluated using the coefficient of determination(R^(2)), explained variance score(EV), mean squared error(MSE), and mean absolute error(MAE) metrics. The Light GBM model is selected to predict the productivity of 30 wells in the PL field with an average error of only 6.31%, which significantly improves the accuracy of the productivity prediction and meets the application requirements in the field. Finally, a software platform integrating data query,oil field analogy, productivity prediction, and knowledge base is established to identify patterns in massive reservoir development data and provide valuable technical references for new reservoir development.
基金financially supported by the National Natural Science Foundation of China(grant no.31770679)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(grant no.KYCX24_1252)the China Scholarship Council(grant no.202308320354).
文摘Forest net primary productivity(NPP)constitutes a key flux within the terrestrial ecosystem carbon cycle and serves as a significant indicator of the forests carbon sequestration capacity,which is closely related to forest age.Despite its significance,the impact of forest age on NPP is often ignored in future NPP projections.Here,we mapped forest age in Hunan Province at a 30-m resolution utilizing a combination of Landsat time series stack(LTSS),national forest inventory(NFI)data,and the relationships between height and age.Subsequently,NPP was derived from NFI data and the relationships between NPP and age was built for various forest types.Then forest NPP was predicted based on the NPP-age relationships under three future scenarios,assessing the impact of forest age on NPP.Our findings reveal substantial variations in forest NPP in Hunan Province under three future scenarios:under the age-only scenario,NPP peaks in 2041(133.56TgC·yr^(−1)),while NPP peaks three years later in 2044(141.14TgC·yr^(−1))under the natural development scenario.The maximum afforestation scenario exhibits the most rapid increase in NPP,with peaking in 2049(197.95TgC·yr^(−1)).However,with the aging of the forest,NPP is projected to then decrease by 7.54%,6.07%,and 7.47%in 2060,and 20.05%,19.74%,and 28.38%in 2100,respectively,compared to their peaks under the three scenarios.This indicates that forest NPP will continue to decline soon.Controlling the age structure of forests through selective logging,afforestation and reforestation,and encouraging natural regeneration after disturbance could mitigate this declining trend in forest NPP,but implications of these measures on the full forest carbon balance remain to be studied.Insights from the future multi-scenarios are expected to provide data to support sustainable forest management and national policy development,which will inform the achievement of carbon neutrality goals by 2060.
基金supported by the Sino-German Postdoc Scholarship Program of the China Scholarship Council(CSC)the German Academic Exchange Service(DAAD)+4 种基金supported in part by the National Natural Science Foundation of China(Nos.32071541,41971071)the Ministry of Science and Technology of China(Nos.2021FY100200,2021FY100702,2023YFF0805802)the Youth Innovation Promotion Association,CAS(No.2021392)the International Partnership Program,CAS(No.151853KYSB20190027)the“Climate Change Research Initiative of the Bavarian National Parks”funded by the Bavarian State Ministry of the Environment and Consumer Protection.
文摘An improved understanding of biodiversity-productivity relationships(BPRs)along environmental gradients is crucial for effective ecosystem management and biodiversity conservation.The stress-gradient hypothesis suggests that BPRs are stronger in stressful environments compared to more favorable conditions.However,there is limited knowledge regarding the variation of BPRs along elevational gradients and their generality across different landscapes.To study how BPRs change with elevation,we harnessed inventory data on 6,431 trees from152 plots surveyed twice in eight to ten year intervals in mountain forests of temperate Europe and subtropical Asia.We quantified the relationship between aboveground productivity and different biodiversity measures,including taxonomic,functional,and phylogenetic diversity.To elucidate the processes underlying BPRs,we studied the variation of different functional traits along elevation across landscapes.We found no general pattern of BPRs across landscapes and elevations.Relationships were neutral for all biodiversity measures in temperate forests,and negative for taxonomic and functional diversity in subtropical forests.BPRs were largely congruent between taxonomic,functional and phylogenetic diversity.We found only weak support for the stress-gradient hypothesis,with BPRs turning from negative to positive(effect not significant)close to the tree line in subtropical forests.In temperate forests,however,elevation patterns were strongly modulated by species identity effects as influenced by specific traits.The effect of traits such as community-weighted mean of maximum plant height and wood density on productivity was congruent across landscapes.Our study highlights the context-dependence of BPRs across elevation gradients and landscapes.Species traits are key modulating factors of BPRs and should be considered more explicitly in studies of the functional role of biodiversity.Furthermore,our findings highlight that potential trade-offs between conserving biodiversity and fostering ecosystem productivity exist,which require more attention in policy and management.
基金This paper was supported by the National Natural Sci-ence Foundation of China (Grant No. 40371001) and the Youth Foundation of Beijing Normal University
文摘An improved Carnegie Ames Stanford Approach model (CASA model) was used to estimate the net primary productivity (NPP) of the Northeast China Transect (NECT) every month from 1982 to 2000. The spatial-temporal distribution of NPP along NECT and its response to climatic change were also analyzed. Results showed that the change tendency of NPP spatial distribution in NECT is quite similar to that of precipitation and their spatial correlation coefficient is up to 0.84 (P 〈 0.01). The inter-annual variation of NPP in NECT is mainly affected by the change of the aestival NPP every year, which accounts for 67.6% of the inter-annual increase in NPP and their spatial correlation coefficient is 0.95 (P 〈 0.01). The NPP in NECT is mainly cumulated between May and September, which accounts for 89.8% of the annual NPP. The NPP in summer (June to August) accounts for 65.9% of the annual NPP and is the lowest in winter. Recent climate changes have enhanced plant growth in NECT. The mean NPP increased 14.3% from 1980s to 1990s. The inter-annual linear trend of NPP is 4.6 gC·m^-2·a^-1, and the relative trend is 1.17%, which owns mainly to the increasing temperature.
基金National Natural Sciences Foundation of China (Nos. 40501072 and 40673067)the Major State Basic Research Develop-ment Program of China (No. 2002CB 412503)the Knowledge In-novation Program of the Institute of Geographic Sciences and Natural Resources Research,CAS "The effect of human activities on regional envi-ronmental quality, the health risk and the environmental remediation"
文摘Biomass and net primary productivity (NPP) are two important parameters in determining ecosystem carbon pool and carbon sequestration. The biomass storage and NPP in desert shrubland of Artemisia ordosica on Ordos Plateau were investigated with method of harvesting standard size shrub in the growing season (June-October) of 2006. Results indicated that above- and belowground biomass of the same size shrubs showed no significant variation in the growing season (p〉0.1), but annual biomass varied significantly (p〈 0.01). In the A. ordosica community, shrub biomass storage was 699.76-1246.40 g.m^-2 and annual aboveground NPP was 224.09 g-m^-2·a^-1. Moreover, shrub biomass and NPP were closely related with shrub dimensions (cover and height) and could be well predicted by shrub volume using power regression.
基金The paper was supported by the project of integrated mangrove management and coastal protection(IMMCP) in Leizhou Peninsula Guangdong Province.
文摘The exotic Sonneratia apetala in Leizhou Peninsula, has shown outstanding fast-growing ability in restored mangrove forests, at the middle and high tide intertidal zone, with year-round fresh water input from drainage. By setting plot and selecting standard tree, investigation and measurement on height growth, diameter growth, biomass, productivity, and so on, were made in a S. apetala plantation at age of six at Lanbei, Fucheng, Leizhou Peninsula in May 2001. The investigating results showed that the mean annual height growth of plantation was 2.03 m and mean annual growth of diameter at breast height (DBH) was 2.35 cm. There exists a significant correlation between the diameter at ground surface (DGS) and DBH. The average biomass of a single standard tree in dry weight was 95.647 kg/m2. A ratio of above-ground biomass to under-ground biomass was 1.60. The stand biomass of unit area was 22.955 kg/m2, singletree wood volume was 88.23 dm3, and the annual wood volume productivity (PA) of the same year was 0.407. The forest energy accumulation was 424.851 MJ/m2, with annual solar energy fixing rate of 40.68 ×10-7%. It is concluded that S. apetala species had characteristics of outstanding high biomass accumulation and could be used as coastal planting tree species in southern China.
基金supported by the National Natu-ral Science Foundation of China (No.40771172 No. 40901223)+1 种基金the Innovative Program of the Chinese Academy of Sciences (No. kzcx2-yw-308)the State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, CAS (SKLLQG0821)
文摘Terrestrial carbon cycle and the global atmospheric CO2 budget are important foci in global climate change research. Simulating net primary productivity (NPP) of terrestrial ecosystems is important for carbon cycle research. In this study, a plant-atmosphere-soil continuum nitrogen (N) cycling model was developed and incorporated into the Boreal Ecosystem Productivity Simulator (BEPS) model. With the established database (leaf area index, land cover, daily meteorology data, vegetation and soil) at a 1 km resolution, daily maps of NPP for Lantsang valley in 2007 were produced, and the spatial-temporal patterns of NPP and mechanisms of its responses to soil N level were further explored. The total NPP and mean NPP of Lantsang valley in 2007 were 66.5 Tg C and 416 g?m-2?a-1 C, respectively. In addition, statistical analysis of NPP of different land cover types was conducted and investigated. Compared with BEPS model (without considering nitrogen effect), it was inferred that the plant carbon fixing for the upstream of Lantsang valley was also limited by soil available nitrogen besides temperature and precipitation. However, nitrogen has no evident limitation to NPP accumulation of broadleaf forest, which mainly distributed in the downstream of Lantsang valley.
文摘Climate warming is expected to influence forest growth,composition and distribution.However,accurately estimating and predicting forest biomass,potential productivity or forest growth is still a challenge for forest managers dealing with land-use at the stand to regional levels.In the present study,we predicted the potential productivity(PP)of forest under current and future climate scenarios(RCP2.6,RCP4.5,RCP6.0 and RCP8.5)in Jilin province,northeastern China by using Paterson’s Climate Vegetation and Productivity(CVP)index model.The PP was validated by comparing it with the mean and maximum net primary production calculated from light energy utilization(GLM_PEM).Our results indicated that using the CVP index model is partially valid for predicting the potential forest productivity in northeastern China.PP exhibited obvious spatial heterogeneity varying from 4.6 to 8.9 m3 ha-1 year-1 with an increasing tendency from northwest to southeast driven by the precipitation across the region.The number of vegetation-active months,precipitation and insolation coefficient were identified as the primary factors affecting PP,but no significant relationship was found for warmest temperature or temperature fluctuation.Under future climate scenarios,PP across the Jilin Province is expected to increase from 1.38%(RCP2.6 in 2050)to 15.30%(RCP8.5 in 2070),especially in the eastern Songnen Plain(SE)for the RCP8.5 scenarios.
文摘Forest Potential Productivity (FPP) of 8 counties in Tianshan was cal culated, and the potential timber output of these counties was analyzed with Mia mi Model and Thornthwaite Memorial Model. Research results showed that annual av erage output of present stand in Tianshan Forest Region was 3.7 m3/(hm2. a), whi ch reached only 49% of average FPP.
基金the financial support from National Natural Science Foundation (NSFC, No. 71671181)
文摘Purpose: This paper aims to investigate the scientific productivity of China's science system. Design/methodology/approach: This paper employs the Malmquist productivity index(MPI) based on Data Envelopment Analysis(DEA).Findings: The results reveal that the overall efficiency of Chinese universities increased significantly from 2009 to 2016, which is mainly driven by technological progress. From the perspective of the functions of higher education, research and transfer activities perform better than the teaching activities.Research limitations: As an implication, the indicator selection mechanism, investigation period and the MPI model can be further extended in the future research.Practical implications: The results indicate that Chinese education administrative departments should take actions to guide and promote the teaching activities and formulate reasonable resource allocation regulations to reach the balanced development in Chinese universities.Originality/value: This paper selects 58 Chinese universities and conducts a quantified measurement during the period 2009–2016. Three main functional activities of universities(i.e. teaching, researching, and application) are innovatively categorized into different schemes, and we calculate their performance, respectively.
基金Supported by the National Natural Science Foundation of China (Grant No.30371172) and the Tenth Five-year Plan National Key Projects in Science and Technology of China (Grant No. 2001BA510B0102)
文摘From 2002 to 2003, based on the investigation of sample plots and stem analysis of remained plantation communities in the areas of returning farmland to forest in the 1980s in Datong County, Qinghai Province, this paper studies tree productivity and moisture potential productivity of six types of plantations on the land of returning farmland to forest, such as green poplar (Populus cathayana Rehd.) and shrub mixed forest, Asia white birch (Betula platyphylla) and China spruce (Picea asperata) mixed forest, Dahurian larch (Larix gmelinii) pure forest, China spruce pure forest and Asia white birch pure forest and so on. The results show that: in sub-humid region of Loess Plateau, 3 000 trees per hm2 is a proper standard of planting density. Under current condition, the productivity index of green poplar and shrub mixed forest, Asia white birch pure forest, China spruce pure forest, and Asia white birch and China spruce mixed forest with the density of 2 1003 333 trees per hm2 can serve as potential productivity standard of actual biomass of arbor established forest. In sub-humid area, Thornthwaite Model is adopted to estimate plant climate potential productivity, which is about 8 462 kghm2穉1. The actual potential water productive efficiency of Purplecone spruce (Picea purpurea) and Asia white birch pure established forest are 17.22 and 22.14 kgmm1hm2穉1 respectively, and that of green poplar and shrub mixed established forest, and Asia white birch and China spruce mixed established forest are 21.14 and 19.09 kgmm1hm2穉1 respectively. The potential productivity of green poplar and shrub mixed forest, Asia white birch and China spruce mixed forest, China spruce pure forest and Asia white birch pure forest which have grown into forest with the density of 3 000 trees per hm2 have attained or been close to that of local climax community, which is local maximum tree productivity at present. These types of forestation models are the developing direction of the returning farmland to forest project.
基金provided by the National Natural Science Foundation of China (No. 41402086)the Colleges Scientific Research Projects of Shandong Province (No. J14LH06)+1 种基金the provincial excellent young talents in colleges and universities in Shandong Province natural science foundation of the mutual funds (No. ZR2015JL016)State key research and development plan (No. 2017YFC0601400)
文摘Using the large-scale thick 4# coal seam from the Mid-Jurassic in the southern Ordos Basin as an example, this paper studied the net primary productivity(NPP) level of the Mid-Jurassic peatland, and discussed its control factors. Geophysical logging signals were used for a spectrum analysis to obtain the Milankovitch cycle parameters in coal seam. These were then used to calculate the accumulation rate of the residual carbon in 4# coal seam. The carbon loss can be calculated according to the density and residual carbon content of 4# coal seam. Then, the total carbon accumulation rate of the peatland was further derived, and the NPP of peatland was determined. The results show that the NPP of MidJurassic peatland is higher than that of Holocene at the same latitude. Comprehensive analysis indicates that the temperature, carbon dioxide and oxygen levels in atmosphere are the main control factors of the NPP of Mid-Jurassic peatland.
基金provided by the Canadian Forest Service,with in-kind support from the Ontario Ministry of Natural Resources and Forestry
文摘Canadian boreal mixedwood forests are extensive,with large potential for carbon sequestration and storage;thus,knowledge of their carbon stocks at different stand ages is needed to adapt forest management practices to help meet climate-change mitigation goals.Carbon stocks were quantified at three Ontario boreal mixedwood sites.A harvested stand,a juvenile stand replanted with spruce seedlings and a mature stand had total carbon stocks(±SE)of 133±13 at age 2,130±13 at age 25,and 207±15 Mg C ha^-1 at age 81 years.At the clear-cut site,stocks were reduced by about 40%or 90 Mg C ha^-1 at harvest.Vegetation held 27,34 and 62%of stocks,while detritus held 34,29 and 13%of stocks at age 2,25 and 81,respectively.Mineral soil carbon stocks averaged 51 Mg C ha^-1,and held 38,37 and 25%of stocks.Aboveground net primary productivity(±SE)in the harvested and juvenile stand was 2.1±0.2 and 3.7±0.3 Mg C ha^-1 per annum(p.a.),compared to 2.6±2.5 Mg C ha^-1 p.a.in the mature stand.The mature canopies studied had typical boreal mixedwood composition and mean carbon densities of 208 Mg C ha^-1,which is above average for managed Canadian boreal forest ecosystems.A comparison of published results from Canadian boreal forest ecosystems showed that carbon stocks in mixedwood stands are typically higher than coniferous stands at all ages,which was also true for stocks in vegetation and detritus.Also,aboveground net primary productivity was typically found to be higher in mixedwood than in coniferous boreal forest stands over a range of ages.Measurements from this study,together with those published from the other boreal forest stands demonstrate the potential for enhanced carbon sequestration through modified forest management practices to take advantage of Canadian boreal mixedwood stand characteristics.
文摘In this paper, the biomass productivity and nutrient cycling in an agroforestry system of coconut (Cocus nucifera) interplanted with pineapple (Ananas comosus) had been studied. The result showed that the biomass productivity of this ecosystem was 47 460 kg...hm2...a?1, which was 4.3 times as much as that of pure coconut plantation. In the biological cycling of N, P. K elements, the total annual retention was 559.470 kg...hm?2, the annual return was 410.745 kg...hm?2, the annual uptake was 970.475 kg...hm?2, respectively. The average circulation rate in three nutrient elements (N, P, K) was 42.32%, which was 27.53% more than that in pure coconut stands. Coconut interplanted with pineapple was proved to be one of optimum cultural patterns, which had the higher biomass productivity, and better usage efficiency of environment resources in tropical areas.
基金the National Basic Research Program of China (No.2009 CB219605)the Key Program of the National Natural Science Foundation of China (No.4073042)the Key Program of the National Science and Technology of China (No.2008ZX05034-04)
文摘Based on regional CBM geological characteristics and drainage data of three typical Coalbed Methane(CBM) wells in the southern Qinshui Basin,history matching,productivity prediction and factor analysis of gas production control are conducted by using COMET3 reservoir modeling software.The results show that in the next 20 years,the cumulative and average daily gas production of the QN01 well are expected to be 800×104 m3 and 1141.1 m3/d,for the QN02 well 878×104 m3 and 1202.7 m3/d and 97.5×104 m3 and 133.55 m3/d for the QN03 well.Gas content and reservoir pressure are the key factors controlling gas production in the area;coal thickness,permeability and porosity are less important;the Langmuir volume,Langmuir pressure and adsorption time have relatively small effect.In the process of CBM recovery,the material source and driving force are the key features affecting gas productivity,while the permeation process is relatively important and the desorption process has some impact on gas recovery.
基金N.D.,V.K.,A.G.,and A.G.were supported by the Russian Science Foundation(Grant No.17-14-01112)V.M.was supported by the Russian Foundation of Basic Research(Grant No.19-05-00756)Data collection was partly performed within the frameworks of a state contract with the Institute of Plant and Animal Ecology,Ural Branch,Russian Academy of Sciences.
文摘Background:Recent warming is affecting species composition and species areal distribution of many regions.However,although most treeline studies have estimated the rates of forest expansion into tundra,still little is known about the long-term dynamic of stand productivity at the forest-tundra intersection.Here,we make use of tree-ring data from 350 larch(Larix sibirica Ledeb.)and spruce(Picea obovata Ledeb.)sampled along the singular altitudinal treeline ecotone at the Polar Urals to assess the dynamic of stand establishment and productivity,and link the results with meteorological observations to identify the main environmental drivers.Results:The analysis of stand instalment indicated that more than 90%of the living trees appeared after 1900.During this period,the stand became denser and moved 50m upward,while in recent decades the trees of both species grew faster.The maximum afforestation occurred in the last decades of the twentieth century,and the large number of encountered saplings indicates that the forest is still expanding.The upward shift coincided with a slight increase of May-August and nearly doubling of September-April precipitation while the increase in growth matched with an early growth season warming(June+0.27°C per decade since 1901).This increase in radial growth combined with the stand densification led to a 6-90 times increase of biomass since 1950.Conclusion:Tree-ring based twentieth century reconstruction at the treeline ecotone shows an ongoing forest densification and expansion accompanied by an increased growth.These changes are driven by climate change mechanism,whereby the leading factors are the significant increase in May-June temperatures and precipitation during the dormant period.Exploring of phytomass accumulation mechanisms within treeline ecotone is valuable for improving our understanding of carbon dynamics and the overall climate balance in current treeline ecosystems and for predicting how these will be altered by global change.
基金Funding for this research was obtained from CONICy T(Comisión Nacional de Investigación Científica y Tecnológica)for the grant Fondecyt No1150877funding was derived from the CONICy T doctoral grant No 21150802
文摘Background: Forest productivity has a pivotal role in human well-being. Vegetation quantity, niche complementarity, mass-ratio, and soil resources are alternative/complementary ecological mechanisms driving productivity. One challenge in current forest management depends on identifying and manipulating these mechanisms to enhance productivity. This study assessed the extent to which these mechanisms control aboveground biomass productivity(AGBP) of a Chilean mediterranean-type matorral. AGBP measured as tree aboveground biomass changes over a 7-years period, was estimated for twelve 25 m × 25 m plots across a wide range of matorral compositions and structures. Variables related to canopy structure, species and functional diversity, species and functional dominance, soil texture, soil water and soil nitrogen content were measured as surrogates of the four mechanisms proposed. Linear regression models were used to test the hypotheses. A multimodel inference based on the Akaike’s information criterion was used to select the best models explaining AGBP and for identifying the relative importance of each mechanism.Results: Vegetation quantity(tree density) and mass-ratio(relative biomass of Cryptocarya alba, a conservative species) were the strongest drivers increasing AGBP, while niche complementarity(richness species) and soil resources(sand, %) had a smaller effect either decreasing or increasing AGBP, respectively. This study provides the first assessment of alternative mechanisms driving AGBP in mediterranean forests of Chile. There is strong evidence suggesting that the vegetation quantity and mass-ratio mechanisms are key drivers of AGBP, such as in other tropical and temperate forests. However, in contrast with other studies from mediterranean-type forests, our results show a negative effect of species diversity and a small effect of soil resources on AGBP.Conclusion: AGBP in the Chilean matorral depends mainly on the vegetation quantity and mass-ratio mechanisms.The findings of this study have implications for matorral restoration and management for the production of timber and non-timber products and carbon sequestration.
基金supported by the National Key Research and Development Program of China (No. 2016YFC0502104,No. 2017YFC0503901)the National Natural Science Foundation of China (No. 31870430)。
文摘Background: Global warming has brought many negative impacts on terrestrial ecosystems, which makes the vulnerability of ecosystems one of the hot issues in current ecological research. Here, we proposed an assessment method based on the IPCC definition of vulnerability. The exposure to future climate was characterized using a moisture index(MI) that integrates the effects of temperature and precipitation. Vegetation stability, defined as the proportion of intact natural vegetation that remains unchanged under changing climate, was used together with vegetation productivity trend to represent the sensitivity and adaptability of ecosystems. Using this method, we evaluated the vulnerability of ecosystems in Southwestern China under two future representative concentration pathways(RCP 4.5 and RCP 8.5) with MC2 dynamic global vegetation model.Results:(1) Future(2017–2100) climate change will leave 7.4%(under RCP 4.5) and 57.4% of(under RCP 8.5) of areas under high or very high vulnerable climate exposure;(2) in terms of vegetation stability, nearly 45% of the study area will show high or very high vulnerability under both RCPs. Beside the impacts of human disturbance on natural vegetation coverage(vegetation intactness), climate change will cause obvious latitudinal movements in vegetation distribution, but the direction of movements under two RCPs were opposite due to the difference in water availability;(3) vegetation productivity in most areas will generally increase and remain a low vulnerability in the future;(4) an assessment based on the above three aspects together indicated that future climate change will generally have an adverse impact on all ecosystems in Southwestern China, with non-vulnerable areas account for only about 3% of the study area under both RCPs. However, compared with RCP 4.5, the areas with mid-and highvulnerability under RCP 8.5 scenario increased by 13% and 16%, respectively.Conclusion: Analyses of future climate exposure and projected vegetation distribution indicate widespread vulnerability of ecosystems in Southwestern China, while vegetation productivity in most areas will show an increasing trend to the end of twenty-first century. Based on new climate indicators and improved vulnerability assessment rules, our method provides an extra option for a more comprehensive evaluation of ecosystem vulnerability, and should be further tested at larger spatial scales in order to provide references for regional, or even global, ecosystem conservation works.
基金This study was funded by the National Natural Science Foundation of China(grant number 41871279 and 41901364).
文摘Background:Process-based models are widely used to simulate forest productivity,but complex parameterization and calibration challenge the application and development of these models.Sensitivity analysis of numerous parameters is an essential step in model calibration and carbon flux simulation.However,parameters are not dependent on each other,and the results of sensitivity analysis usually vary due to different forest types and regions.Hence,global and representative sensitivity analysis would provide reliable information for simple calibration.Methods:To determine the contributions of input parameters to gross primary productivity(GPP)and net primary productivity(NPP),regression analysis and extended Fourier amplitude sensitivity testing(EFAST)were conducted for Biome-BGCMuSo to calculate the sensitivity index of the parameters at four observation sites under climate gradient from ChinaFLUX.Results:Generally,GPP and NPP were highly sensitive to C:Nleaf(C:N of leaves),Wint(canopy water interception coefficient),k(canopy light extinction coefficient),FLNR(fraction of leaf N in Rubisco),MRpern(coefficient of linear relationship between tissue N and maintenance respiration),VPDf(vapor pressure deficit complete conductance reduction),and SLA1(canopy average specific leaf area in phenological phase 1)at all observation sites.Various sensitive parameters occurred at four observation sites within different climate zones.GPP and NPP were particularly sensitive to FLNR,SLA1 and Wint,and C:Nleaf in temperate,alpine and subtropical zones,respectively.Conclusions:The results indicated that sensitivity parameters of China's forest ecosystems change with climate gradient.We found that parameter calibration should be performed according to plant functional type(PFT),and more attention needs to be paid to the differences in climate and environment.These findings contribute to determining the target parameters in field experiments and model calibration.
基金financial support from the Open Fund(PLN1003) of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(Southwest Petroleum University)the National Science and Technology Major Project in the l lth Five-Year Plan(Grant No.2008ZX05054)
文摘It is known that there is a discrepancy between field data and the results predicted from the previous equations derived by simplifying three-dimensional(3-D) flow into two-dimensions(2-D).This paper presents a new steady-state productivity equation for horizontal wells in bottom water drive gas reservoirs.Firstly,the fundamental solution to the 3-D steady-state Laplace equation is derived with the philosophy of source and the Green function for a horizontal well located at the center of the laterally infinite gas reservoir.Then,using the fundamental solution and the Simpson integral formula,the average pseudo-pressure equation and the steady-state productivity equation are achieved for the horizontal section.Two case-studies are given in the paper,the results calculated from the newly-derived formula are very close to the numerical simulation performed with the Canadian software CMG and the real production data,indicating that the new formula can be used to predict the steady-state productivity of such horizontal gas wells.