Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim ...Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim to offer a platform for the rapid dissemination of signifi cant,novel,and high-impact research in the fi elds of agricultural product processing science,technology,engineering,and nutrition.Additionally,supplemental issues are curated and published to facilitate in-depth discussions on special topics.展开更多
Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim ...Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim to offer a platform for the rapid dissemination of signifi cant,novel,and high-impact research in the fi elds of agricultural product processing science,technology,engineering,and nutrition.Additionally,supplemental issues are curated and published to facilitate in-depth discussions on special topics.展开更多
Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim ...Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim to offer a platform for the rapid dissemination of signifi cant,novel,and high-impact research in the fi elds of agricultural product processing science,technology,engineering,and nutrition.Additionally,supplemental issues are curated and published to facilitate in-depth discussions on special topics.展开更多
Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim ...Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim to offer a platform for the rapid dissemination of signifi cant,novel,and high-impact research in the fi elds of agricultural product processing science,technology,engineering,and nutrition.Additionally,supplemental issues are curated and published to facilitate in-depth discussions on special topics.展开更多
Breakage is an important step in the resource processing chain.However,the mechanical crushing methods commonly used today suffer from low energy efficiency and high dust levels.Promoting environmental protection and ...Breakage is an important step in the resource processing chain.However,the mechanical crushing methods commonly used today suffer from low energy efficiency and high dust levels.Promoting environmental protection and improving energy efficiency are crucial to advancing China’s circular economy.Mining companies are actively exploring novel and innovative technologies to significantly cut down on operating costs and minimize emissions of dust and pollutants generated during processing.Recently,high voltage pulse discharge(HVPD)technology has received widespread attention and has been reported to have good application prospects in resource processing.This paper presents an extensive review of the operational principles of HVPD and the unique characteristics it engenders,such as non-polluting,selective material fragmentation,pre-weakening,pre-concentration,and enhanced permeability of coal seams.Additionally,this review explores the potential and obstacles confronting HVPD in industrial contexts,offering fresh insights for HVPD optimization and providing guidance and prospects for industrial deployment and further development.展开更多
Laser powder-bed fusion(LPBF)of Zn-0.8Cu(wt.%)alloys exhibits significant advantages in the customization of biodegradable bone implants.However,the formability of LPBFed Zn alloy is not sufficient due to the spheroid...Laser powder-bed fusion(LPBF)of Zn-0.8Cu(wt.%)alloys exhibits significant advantages in the customization of biodegradable bone implants.However,the formability of LPBFed Zn alloy is not sufficient due to the spheroidization during the interaction of powder and laser beam,of which the mechanism is still not well understood.In this study,the evolution of morphology and grain structure of the LPBFed Zn-Cu alloy was investigated based on single-track deposition experiments.As the scanning speed increases,the grain structure of a single track of Zn-Cu alloy gradually refines,but the formability deteriorates,leading to the defect’s formation in the subsequent fabrication.The Zn-Cu alloys fabricated by optimum processing parameters exhibit a tensile strength of 157.13 MPa,yield strength of 106.48 MPa and elongation of 14.7%.This work provides a comprehensive understanding of the processing optimization of Zn-Cu alloy,achieving LPBFed Zn-Cu alloy with high density and excellent mechanical properties.展开更多
A novel method for noise removal from the rotating accelerometer gravity gradiometer(MAGG)is presented.It introduces a head-to-tail data expansion technique based on the zero-phase filtering principle.A scheme for det...A novel method for noise removal from the rotating accelerometer gravity gradiometer(MAGG)is presented.It introduces a head-to-tail data expansion technique based on the zero-phase filtering principle.A scheme for determining band-pass filter parameters based on signal-to-noise ratio gain,smoothness index,and cross-correlation coefficient is designed using the Chebyshev optimal consistent approximation theory.Additionally,a wavelet denoising evaluation function is constructed,with the dmey wavelet basis function identified as most effective for processing gravity gradient data.The results of hard-in-the-loop simulation and prototype experiments show that the proposed processing method has shown a 14%improvement in the measurement variance of gravity gradient signals,and the measurement accuracy has reached within 4E,compared to other commonly used methods,which verifies that the proposed method effectively removes noise from the gradient signals,improved gravity gradiometry accuracy,and has certain technical insights for high-precision airborne gravity gradiometry.展开更多
针对机载预警雷达空时自适应处理(space-time adaptive processing,STAP)所面临的异构杂波环境,基于杂波和噪声的联合稀疏特性提出了一种直接数据域(direct data domain,D3)STAP方法。首先通过子孔径平滑技术扩充训练样本集合;然后基于...针对机载预警雷达空时自适应处理(space-time adaptive processing,STAP)所面临的异构杂波环境,基于杂波和噪声的联合稀疏特性提出了一种直接数据域(direct data domain,D3)STAP方法。首先通过子孔径平滑技术扩充训练样本集合;然后基于杂波谱二阶表征理论构造STAP功率字典矩阵、导出目标函数,并解得待检测单元信号的空时功率谱;最后根据杂波先验信息重构无孔径损失的杂波加噪声协方差矩阵。数值实验验证了所提方法的协方差矩阵估计精度高于传统的稀疏恢复D3-STAP算法,且在理想情况和存在阵列误差的情况下,所提方法皆具备更好的低速目标检测性能。展开更多
Beam-hopping technology has become one of the major research hotspots for satellite communication in order to enhance their communication capacity and flexibility.However,beam hopping causes the traditional continuous...Beam-hopping technology has become one of the major research hotspots for satellite communication in order to enhance their communication capacity and flexibility.However,beam hopping causes the traditional continuous time-division multiplexing signal in the forward downlink to become a burst signal,satellite terminal receivers need to solve multiple key issues such as burst signal rapid synchronization and high-per-formance reception.Firstly,this paper analyzes the key issues of burst communication for traffic signals in beam hopping sys-tems,and then compares and studies typical carrier synchro-nization algorithms for burst signals.Secondly,combining the requirements of beam-hopping communication systems for effi-cient burst and low signal-to-noise ratio reception of downlink signals in forward links,a decoding assisted bidirectional vari-able parameter iterative carrier synchronization technique is pro-posed,which introduces the idea of iterative processing into car-rier synchronization.Aiming at the technical characteristics of communication signal carrier synchronization,a new technical approach of bidirectional variable parameter iteration is adopted,breaking through the traditional understanding that loop struc-tures cannot adapt to low signal-to-noise ratio burst demodula-tion.Finally,combining the DVB-S2X standard physical layer frame format used in high throughput satellite communication systems,the research and performance simulation are con-ducted.The results show that the new technology proposed in this paper can significantly shorten the carrier synchronization time of burst signals,achieve fast synchronization of low signal-to-noise ratio burst signals,and have the unique advantage of flexible and adjustable parameters.展开更多
文摘Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim to offer a platform for the rapid dissemination of signifi cant,novel,and high-impact research in the fi elds of agricultural product processing science,technology,engineering,and nutrition.Additionally,supplemental issues are curated and published to facilitate in-depth discussions on special topics.
文摘Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim to offer a platform for the rapid dissemination of signifi cant,novel,and high-impact research in the fi elds of agricultural product processing science,technology,engineering,and nutrition.Additionally,supplemental issues are curated and published to facilitate in-depth discussions on special topics.
文摘Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim to offer a platform for the rapid dissemination of signifi cant,novel,and high-impact research in the fi elds of agricultural product processing science,technology,engineering,and nutrition.Additionally,supplemental issues are curated and published to facilitate in-depth discussions on special topics.
文摘Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim to offer a platform for the rapid dissemination of signifi cant,novel,and high-impact research in the fi elds of agricultural product processing science,technology,engineering,and nutrition.Additionally,supplemental issues are curated and published to facilitate in-depth discussions on special topics.
基金Foundation item:Project(2023YFC2909000) supported by the National Key R&D Program for Young Scientists,ChinaProject(2023JH3/10200010) supported by the Excellent Youth Natural Science Foundation of Liaoning Province,China+3 种基金Project (XLYC2203167) supported by the Liaoning Revitalization Talents Program,ChinaProject(RC231175) supported by the Mid-career and Young Scientific and Technological Talents Program of Shenyang,ChinaProject(2023A03003-2) supported by the Key Special Program of Xinjiang,ChinaProject(N2301026) supported by the Fundamental Research Funds for the Central Universities,China。
文摘Breakage is an important step in the resource processing chain.However,the mechanical crushing methods commonly used today suffer from low energy efficiency and high dust levels.Promoting environmental protection and improving energy efficiency are crucial to advancing China’s circular economy.Mining companies are actively exploring novel and innovative technologies to significantly cut down on operating costs and minimize emissions of dust and pollutants generated during processing.Recently,high voltage pulse discharge(HVPD)technology has received widespread attention and has been reported to have good application prospects in resource processing.This paper presents an extensive review of the operational principles of HVPD and the unique characteristics it engenders,such as non-polluting,selective material fragmentation,pre-weakening,pre-concentration,and enhanced permeability of coal seams.Additionally,this review explores the potential and obstacles confronting HVPD in industrial contexts,offering fresh insights for HVPD optimization and providing guidance and prospects for industrial deployment and further development.
基金Project(2022YFC2406000)supported by the National Key R&D Program,ChinaProject(2022GDASZH-2022010107)supported by the Guangdong Academy of Science,China+4 种基金Project(2019BT02C629)supported by the Guangdong Special Support Program,ChinaProject(2022GDASZH-2022010203-003)supported by the GDAS’project of Science and Technology Development,ChinaProjects(2023B1212120008,2023B1212060045)supported by the Guangdong Province Science and Technology Plan Projects,ChinaProject(2023TQ07Z559)supported by the Special Support Foundation of Guangdong Province,ChinaProject(52105293)supported by the National Natural Science Foundation of China。
文摘Laser powder-bed fusion(LPBF)of Zn-0.8Cu(wt.%)alloys exhibits significant advantages in the customization of biodegradable bone implants.However,the formability of LPBFed Zn alloy is not sufficient due to the spheroidization during the interaction of powder and laser beam,of which the mechanism is still not well understood.In this study,the evolution of morphology and grain structure of the LPBFed Zn-Cu alloy was investigated based on single-track deposition experiments.As the scanning speed increases,the grain structure of a single track of Zn-Cu alloy gradually refines,but the formability deteriorates,leading to the defect’s formation in the subsequent fabrication.The Zn-Cu alloys fabricated by optimum processing parameters exhibit a tensile strength of 157.13 MPa,yield strength of 106.48 MPa and elongation of 14.7%.This work provides a comprehensive understanding of the processing optimization of Zn-Cu alloy,achieving LPBFed Zn-Cu alloy with high density and excellent mechanical properties.
文摘A novel method for noise removal from the rotating accelerometer gravity gradiometer(MAGG)is presented.It introduces a head-to-tail data expansion technique based on the zero-phase filtering principle.A scheme for determining band-pass filter parameters based on signal-to-noise ratio gain,smoothness index,and cross-correlation coefficient is designed using the Chebyshev optimal consistent approximation theory.Additionally,a wavelet denoising evaluation function is constructed,with the dmey wavelet basis function identified as most effective for processing gravity gradient data.The results of hard-in-the-loop simulation and prototype experiments show that the proposed processing method has shown a 14%improvement in the measurement variance of gravity gradient signals,and the measurement accuracy has reached within 4E,compared to other commonly used methods,which verifies that the proposed method effectively removes noise from the gradient signals,improved gravity gradiometry accuracy,and has certain technical insights for high-precision airborne gravity gradiometry.
文摘针对机载预警雷达空时自适应处理(space-time adaptive processing,STAP)所面临的异构杂波环境,基于杂波和噪声的联合稀疏特性提出了一种直接数据域(direct data domain,D3)STAP方法。首先通过子孔径平滑技术扩充训练样本集合;然后基于杂波谱二阶表征理论构造STAP功率字典矩阵、导出目标函数,并解得待检测单元信号的空时功率谱;最后根据杂波先验信息重构无孔径损失的杂波加噪声协方差矩阵。数值实验验证了所提方法的协方差矩阵估计精度高于传统的稀疏恢复D3-STAP算法,且在理想情况和存在阵列误差的情况下,所提方法皆具备更好的低速目标检测性能。
基金This work was supported by the Key Research and Development Program of Shaanxi(2022ZDLGY05-08)the Application Innovation Program of CASC(China Aerospace Science and Technology Corporation)(6230107001)+2 种基金the Research Project on Civil Aerospace Technology(D040304)the Research Project of CAST(Y23-WYHXJS-07)the Research Foundation of the Key Laboratory of Spaceborne Information Intelligent Interpretation(2022-ZZKY-JJ-20-01).
文摘Beam-hopping technology has become one of the major research hotspots for satellite communication in order to enhance their communication capacity and flexibility.However,beam hopping causes the traditional continuous time-division multiplexing signal in the forward downlink to become a burst signal,satellite terminal receivers need to solve multiple key issues such as burst signal rapid synchronization and high-per-formance reception.Firstly,this paper analyzes the key issues of burst communication for traffic signals in beam hopping sys-tems,and then compares and studies typical carrier synchro-nization algorithms for burst signals.Secondly,combining the requirements of beam-hopping communication systems for effi-cient burst and low signal-to-noise ratio reception of downlink signals in forward links,a decoding assisted bidirectional vari-able parameter iterative carrier synchronization technique is pro-posed,which introduces the idea of iterative processing into car-rier synchronization.Aiming at the technical characteristics of communication signal carrier synchronization,a new technical approach of bidirectional variable parameter iteration is adopted,breaking through the traditional understanding that loop struc-tures cannot adapt to low signal-to-noise ratio burst demodula-tion.Finally,combining the DVB-S2X standard physical layer frame format used in high throughput satellite communication systems,the research and performance simulation are con-ducted.The results show that the new technology proposed in this paper can significantly shorten the carrier synchronization time of burst signals,achieve fast synchronization of low signal-to-noise ratio burst signals,and have the unique advantage of flexible and adjustable parameters.