A novel strategy of probability density function (PDF) shape control is proposed in stochastic systems. The control er is designed whose parameters are optimal y obtained through the improved particle swarm optimiza...A novel strategy of probability density function (PDF) shape control is proposed in stochastic systems. The control er is designed whose parameters are optimal y obtained through the improved particle swarm optimization algorithm. The parameters of the control er are viewed as the space position of a particle in particle swarm optimization algorithm and updated continual y until the control er makes the PDF of the state variable as close as possible to the expected PDF. The proposed PDF shape control technique is compared with the equivalent linearization technique through simulation experiments. The results show the superiority and the effectiveness of the proposed method. The control er is excellent in making the state PDF fol ow the expected PDF and has the very smal error between the state PDF and the expected PDF, solving the control problem of the PDF shape in stochastic systems effectively.展开更多
This paper presents a new algorithm designed to control the shape of the output probability density function (PDF) of singular systems subjected to non-Gaussian input. The aim is to select a control input uk such that...This paper presents a new algorithm designed to control the shape of the output probability density function (PDF) of singular systems subjected to non-Gaussian input. The aim is to select a control input uk such that the output PDF is made as close as possible to a given PDF.Based on the B-spline neural network approximation of the output PDF, the control algorithm is formulated by extending the developed PDF control strategies of non-singular systems to singular systems. It has been shown that under certain conditions the stability of the closed-loop system can be guaranteed. Simulation examples are given to show the effectiveness of the proposed control algorithm.展开更多
Traditionally, it is widely accepted that measurement error usually obeys the normal distribution. However, in this paper a new idea is proposed that the error in digitized data which is a major derived data source in...Traditionally, it is widely accepted that measurement error usually obeys the normal distribution. However, in this paper a new idea is proposed that the error in digitized data which is a major derived data source in GIS does not obey the normal distribution but the p-norm distribution with a determinate parameter. Assuming that the error is random and has the same statistical properties, the probability density function of the normal distribution, Laplace distribution and p-norm distribution are derived based on the arithmetic mean axiom, median axiom and p-median axiom, which means that the normal distribution is only one of these distributions but not the least one. Based on this ideal distribution fitness tests such as Skewness and Kurtosis coefficient test, Pearson chi-square chi(2) test and Kolmogorov test for digitized data are conducted. The results show that the error in map digitization obeys the p-norm distribution whose parameter is close to 1.60. A least p-norm estimation and the least square estimation of digitized data are further analyzed, showing that the least p-norm adjustment is better than the least square adjustment for digitized data processing in GIS.展开更多
A new fault tolerant control(FTC) via a controller reconfiguration approach for general stochastic nonlinear systems is studied.Different from the formulation of classical FTC methods,it is supposed that the measure...A new fault tolerant control(FTC) via a controller reconfiguration approach for general stochastic nonlinear systems is studied.Different from the formulation of classical FTC methods,it is supposed that the measured information for the FTC is the probability density functions(PDFs) of the system output rather than its measured value.A radial basis functions(RBFs) neural network technique is proposed so that the output PDFs can be formulated in terms of the dynamic weighings of the RBFs neural network.As a result,the nonlinear FTC problem subject to dynamic relation between the input and the output PDFs can be transformed into a nonlinear FTC problem subject to dynamic relation between the control input and the weights of the RBFs neural network approximation to the output PDFs.The FTC design consists of two steps.The first step is fault detection and diagnosis(FDD),which can produce an alarm when there is a fault in the system and also locate which component has a fault.The second step is to adapt the controller to the faulty case so that the system is able to achieve its target.A linear matrix inequality(LMI) based feasible FTC method is applied such that the fault can be detected and diagnosed.An illustrated example is included to demonstrate the efficiency of the proposed algorithm,and satisfactory results have been obtained.展开更多
The load balance is a critical issue of distributed Hash table (DHT), and the previous work shows that there exists O(logn) imbalance of load in Chord. The load distribution of Chord, Pastry, and the virtual serve...The load balance is a critical issue of distributed Hash table (DHT), and the previous work shows that there exists O(logn) imbalance of load in Chord. The load distribution of Chord, Pastry, and the virtual servers (VS) balancing scheme and deduces the closed form expressions of the probability density function (PDF) and cumulative distribution function (CDF) of the load in these DHTs is analyzes. The analysis and simulation show that the load of all these DHTs obeys the gamma distribution with similar formed parameters.展开更多
基金supported by the National Natural Science Fundation of China(61273127)the Specialized Research Fund of the Doctoral Program in Higher Education(20106118110009+2 种基金20116118110008)the Scientific Research Plan Projects of Shaanxi Education Department(12JK0524)the Young Teachers Scientific Research Fund of Xi’an University of Posts and Telecommunications(1100434)
文摘A novel strategy of probability density function (PDF) shape control is proposed in stochastic systems. The control er is designed whose parameters are optimal y obtained through the improved particle swarm optimization algorithm. The parameters of the control er are viewed as the space position of a particle in particle swarm optimization algorithm and updated continual y until the control er makes the PDF of the state variable as close as possible to the expected PDF. The proposed PDF shape control technique is compared with the equivalent linearization technique through simulation experiments. The results show the superiority and the effectiveness of the proposed method. The control er is excellent in making the state PDF fol ow the expected PDF and has the very smal error between the state PDF and the expected PDF, solving the control problem of the PDF shape in stochastic systems effectively.
基金Supported by the Research Fund of Chinese Academy of Sciences (2004-1-4)
文摘This paper presents a new algorithm designed to control the shape of the output probability density function (PDF) of singular systems subjected to non-Gaussian input. The aim is to select a control input uk such that the output PDF is made as close as possible to a given PDF.Based on the B-spline neural network approximation of the output PDF, the control algorithm is formulated by extending the developed PDF control strategies of non-singular systems to singular systems. It has been shown that under certain conditions the stability of the closed-loop system can be guaranteed. Simulation examples are given to show the effectiveness of the proposed control algorithm.
文摘Traditionally, it is widely accepted that measurement error usually obeys the normal distribution. However, in this paper a new idea is proposed that the error in digitized data which is a major derived data source in GIS does not obey the normal distribution but the p-norm distribution with a determinate parameter. Assuming that the error is random and has the same statistical properties, the probability density function of the normal distribution, Laplace distribution and p-norm distribution are derived based on the arithmetic mean axiom, median axiom and p-median axiom, which means that the normal distribution is only one of these distributions but not the least one. Based on this ideal distribution fitness tests such as Skewness and Kurtosis coefficient test, Pearson chi-square chi(2) test and Kolmogorov test for digitized data are conducted. The results show that the error in map digitization obeys the p-norm distribution whose parameter is close to 1.60. A least p-norm estimation and the least square estimation of digitized data are further analyzed, showing that the least p-norm adjustment is better than the least square adjustment for digitized data processing in GIS.
文摘间歇过程的优化控制依赖于过程精确的数学模型,数据驱动的建模方法是目前间歇过程模型研究中的热点问题。突破传统数据驱动建模方法中采用均方差(mean squared error,MSE)作为准则函数的思想,提出一种新颖的间歇过程数据驱动建模方法,引入了概率密度函数(probability density function,PDF)控制的概念,构造间歇过程模型误差控制系统,将模型的可调参数作为控制系统的输入,模型误差PDF的形状作为控制系统的输出,从而把开环模型参数辨识问题转化为模型误差PDF形状的闭环控制问题。通过可调参数控制模型误差PDF的空间分布状态,不仅能够保障模型精度,还可控制模型误差的空间分布状态,从而消除模型中的有色噪声。仿真实验表明,基于模型误差PDF形状的间歇过程数据驱动模型具有较好的建模精度、鲁棒性和泛化能力,为间歇过程的数据驱动建模提供了一条新途径。
基金supported by the UK Leverhulme Trust (F/00 120/BC)the National Natural Science Foundation of China (6082800760974029)
文摘A new fault tolerant control(FTC) via a controller reconfiguration approach for general stochastic nonlinear systems is studied.Different from the formulation of classical FTC methods,it is supposed that the measured information for the FTC is the probability density functions(PDFs) of the system output rather than its measured value.A radial basis functions(RBFs) neural network technique is proposed so that the output PDFs can be formulated in terms of the dynamic weighings of the RBFs neural network.As a result,the nonlinear FTC problem subject to dynamic relation between the input and the output PDFs can be transformed into a nonlinear FTC problem subject to dynamic relation between the control input and the weights of the RBFs neural network approximation to the output PDFs.The FTC design consists of two steps.The first step is fault detection and diagnosis(FDD),which can produce an alarm when there is a fault in the system and also locate which component has a fault.The second step is to adapt the controller to the faulty case so that the system is able to achieve its target.A linear matrix inequality(LMI) based feasible FTC method is applied such that the fault can be detected and diagnosed.An illustrated example is included to demonstrate the efficiency of the proposed algorithm,and satisfactory results have been obtained.
基金supported by the National Development and Reform Commission of China (CNGI-04-12-1D).
文摘The load balance is a critical issue of distributed Hash table (DHT), and the previous work shows that there exists O(logn) imbalance of load in Chord. The load distribution of Chord, Pastry, and the virtual servers (VS) balancing scheme and deduces the closed form expressions of the probability density function (PDF) and cumulative distribution function (CDF) of the load in these DHTs is analyzes. The analysis and simulation show that the load of all these DHTs obeys the gamma distribution with similar formed parameters.