期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Tracking a maneuvering target in clutter with out-of-sequence measurements for airborne radar 被引量:3
1
作者 Weihua Wu Jing Jiang Yang Wan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第4期746-753,共8页
There are many proposed optimal or suboptimal al- gorithms to update out-of-sequence measurement(s) (OoSM(s)) for linear-Gaussian systems, but few algorithms are dedicated to track a maneuvering target in clutte... There are many proposed optimal or suboptimal al- gorithms to update out-of-sequence measurement(s) (OoSM(s)) for linear-Gaussian systems, but few algorithms are dedicated to track a maneuvering target in clutter by using OoSMs. In order to address the nonlinear OoSMs obtained by the airborne radar located on a moving platform from a maneuvering target in clut- ter, an interacting multiple model probabilistic data association (IMMPDA) algorithm with the OoSM is developed. To be practical, the algorithm is based on the Earth-centered Earth-fixed (ECEF) coordinate system where it considers the effect of the platform's attitude and the curvature of the Earth. The proposed method is validated through the Monte Carlo test compared with the perfor- mance of the standard IMMPDA algorithm ignoring the OoSM, and the conclusions show that using the OoSM can improve the track- ing performance, and the shorter the lag step is, the greater degree the performance is improved, but when the lag step is large, the performance is not improved any more by using the OoSM, which can provide some references for engineering application. 展开更多
关键词 out-of-sequence measurement(s) (OoSM(s)) Earth-centered Earth-fixed (ECEF) interacting multiple model (IMM) probabilistic data association (PDA) attitude.
在线阅读 下载PDF
基于扩散模型图像增强与多类特征融合的火焰燃烧状态智能识别
2
作者 汤健 杨薇薇 +2 位作者 夏恒 崔璨麟 乔俊飞 《北京工业大学学报》 2025年第12期1502-1514,共13页
针对领域专家依据经验判断城市固废焚烧(municipal solid waste incineration,MSWI)过程中的火焰燃烧状态具有随意性、主观性和差异性,以及高质量火焰图像稀少等问题,提出基于去噪扩散概率模型(denoising diffusion probabilistic model... 针对领域专家依据经验判断城市固废焚烧(municipal solid waste incineration,MSWI)过程中的火焰燃烧状态具有随意性、主观性和差异性,以及高质量火焰图像稀少等问题,提出基于去噪扩散概率模型(denoising diffusion probabilistic model,DDPM)的图像增强与多类特征融合的火焰燃烧状态识别方法。首先,利用DDPM生成虚拟火焰图像以弥补高质量建模图像稀缺问题;然后,对由真实和虚拟图像混`合得到的建模数据采用LeNet-5模型提取深度特征,同时提取火焰图像的亮度、范围和颜色等物理特征;最后,面向上述混合特征构建基于深度森林分类(deep forest classification,DFC)的火焰燃烧状态识别模型。基于实际MSWI过程火焰图像验证了该方法的有效性和优越性。 展开更多
关键词 城市固废焚烧(municipal solid waste incineration MSWI) 火焰燃烧状态识别 去噪扩散概率模型(denoising diffusion probabilistic model DDPM) 深度特征 物理特征 深度森林分类(deep forest classification DFC)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部