期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于加权多尺度张量子空间的人脸图像特征提取方法 被引量:16
1
作者 王仕民 程柏良 +1 位作者 叶继华 王明文 《数据采集与处理》 CSCD 北大核心 2016年第4期791-798,共8页
为了不破坏原始数据固有的高阶结构和数据之间的相关性,减少光照对图像特征的影响,并优化多尺度特征的权重,提出了基于加权多尺度张量子空间的图像特征提取方法。采用多尺度小波变换表征图像各个部位特征,使用不确定度权衡每个尺度对图... 为了不破坏原始数据固有的高阶结构和数据之间的相关性,减少光照对图像特征的影响,并优化多尺度特征的权重,提出了基于加权多尺度张量子空间的图像特征提取方法。采用多尺度小波变换表征图像各个部位特征,使用不确定度权衡每个尺度对图像分类的作用,并组建成多尺度张量子空间,结合多线性主成分分析与线性判别分析算法,降低了图像在处理过程中的成本,保存了高维数据固有结构和相关性,完成对图像特征提取。使用CAS-PEAL-R1东方人脸库进行评测,实验结果表明,该图像特征提取算法用于图像识别过程中具有较好的效果,具有一定的可行性。 展开更多
关键词 图像特征 多尺度变换 张量子空间 多线性主成分分析 不确定度
在线阅读 下载PDF
张量主成分分析与高维信息压缩方法 被引量:4
2
作者 夏志明 赵文芝 徐宗本 《工程数学学报》 CSCD 北大核心 2017年第6期571-590,共20页
本文概述了信息压缩背景下的张量主成分分析的研究历史与发展现状,并展望了一些可能的研究领域.首先,我们回顾了张量以及张量分解的历史,在信息压缩背景下张量分解可以统一表达为一个普适的统计模型;其次,按经典主成分分析(PCA)、稳健... 本文概述了信息压缩背景下的张量主成分分析的研究历史与发展现状,并展望了一些可能的研究领域.首先,我们回顾了张量以及张量分解的历史,在信息压缩背景下张量分解可以统一表达为一个普适的统计模型;其次,按经典主成分分析(PCA)、稳健主成分分析以及稀疏主成分分析三大类,我们详述了每类在多样本和单样本情形下的统计理论和优化算法的进展,其中又由简单数据结构到复杂数据结构依次对向量数据、矩阵数据以及张量数据的PCA发展进行了概述. 展开更多
关键词 张量主成分分析 信息压缩 Tucker分解 稳健PCA 稀疏PCA
在线阅读 下载PDF
基于多线性主成分分析的支持高阶张量机 被引量:3
3
作者 曾奎 何丽芳 杨晓伟 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第2期219-227,共9页
为了处理张量数据,传统的学习算法常常把张量展成向量,但会造成破坏原始数据固有的高阶结构和内在相关性,导致信息丢失,或产生高维向量,使得后期学习过程中容易出现过拟合、维度灾难和小样本问题.近年提出了许多基于张量模式的分类算法... 为了处理张量数据,传统的学习算法常常把张量展成向量,但会造成破坏原始数据固有的高阶结构和内在相关性,导致信息丢失,或产生高维向量,使得后期学习过程中容易出现过拟合、维度灾难和小样本问题.近年提出了许多基于张量模式的分类算法,而支持高阶张量机算法是张量分类算法中最有效的方法之一.考虑到张量的高维性和高冗余性,本文提出基于多线性主成分分析的支持高阶张量机分类算法(Multilinear Principle Component Analysis Based Support High-Order Tensor Machine,MPCA+SHTM).该算法首先利用多线性主成分分析对张量进行降维,然后利用支持高阶张量机对降维后的张量进行学习.在12个张量数据集上的实验表明:MPCA+SHTM在保持测试精度的情况下有效地降低了SHTM的计算时间. 展开更多
关键词 支持高阶张量机 多线性主成分分析 张量分解 交替投影张量机 support HIGHER-ORDER tensor machine(SHTM) MULTILINEAR principle component analysis(MPCA)
在线阅读 下载PDF
局部对比度先验下基于低秩模型的红外小目标检测方法 被引量:10
4
作者 何巍 安博文 潘胜达 《光子学报》 EI CAS CSCD 北大核心 2021年第11期342-358,共17页
为了解决红外小目标检测算法容易在复杂背景边缘和拐点处误检的问题,本文提出了一种局部对比度与非局部低秩张量模型相融合的红外小目标检测算法。首先采用双窗口结构的局部对比度算法提取目标和背景的局部先验信息。然后在所获取的局... 为了解决红外小目标检测算法容易在复杂背景边缘和拐点处误检的问题,本文提出了一种局部对比度与非局部低秩张量模型相融合的红外小目标检测算法。首先采用双窗口结构的局部对比度算法提取目标和背景的局部先验信息。然后在所获取的局部先验信息约束下,对标准的红外块张量模型进行重新构建,并通过引入加权张量核范数最小化来进一步抑制背景和提高迭代效率。最后,将目标和背景的分离问题,转化成了一个张量鲁棒性主成分分析问题,并用交替方向乘子法实现该问题的求解。实验表明,在不同的复杂背景下,本文方法的性能均优于现有的典型红外小目标检测方法。 展开更多
关键词 红外小目标检测 加权张量核范数最小化 双窗口局部对比度算法 张量鲁棒性主成分分析 交替方向乘子法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部