期刊文献+
共找到183篇文章
< 1 2 10 >
每页显示 20 50 100
基于EMD-KPCA-LSTM与SVG控制的双馈风电系统次同步振荡抑制方法
1
作者 张旭 徐鑫 +1 位作者 董成武 张继龙 《电气工程学报》 北大核心 2025年第2期54-67,共14页
静止无功发生器(Static var generator, SVG)凭借其快速动态响应特性,在抑制双馈风电系统并网的次同步振荡方面发挥了重要作用。然而,传统控制策略在应对系统复杂的非线性和时变特性时,仍存在一定的局限性。为此,提出一种基于经验模态分... 静止无功发生器(Static var generator, SVG)凭借其快速动态响应特性,在抑制双馈风电系统并网的次同步振荡方面发挥了重要作用。然而,传统控制策略在应对系统复杂的非线性和时变特性时,仍存在一定的局限性。为此,提出一种基于经验模态分解(Empirical mode decomposition, EMD)、核主成分分析(Kernel principal component analysis, KPCA)、长短期记忆网络(Long short-term memory, LSTM)与SVG附加阻尼控制的次同步振荡抑制方法。首先,通过EMD提取系统的振荡特征,利用KPCA进行降维优化,进一步通过LSTM对系统的动态特性进行建模与预测,从而显著提高了预测精度。在此基础上,结合SVG的附加阻尼控制功能,实时调节SVG的控制信号,有效抑制次同步振荡,提升系统的稳定性。该方法的创新在于将信号处理技术与深度学习算法相结合,构建了一个高效的预测与控制框架,为传统控制策略提供了全新思路。最后,利用PSCAD进行仿真分析,验证了该方法的有效性,为高渗透率新能源电网的稳定运行提供了技术支持。 展开更多
关键词 次同步振荡 经验模态分解 长短期记忆网络 双馈风电系统 静止无功发生器 核主成分分析
在线阅读 下载PDF
基于聚类EEMD-PCA-LSTM与误差补偿的光热电站短期太阳直接法向辐射预测
2
作者 张晓英 常正云 +1 位作者 罗童 张兴平 《电气工程学报》 北大核心 2025年第2期345-353,共9页
太阳直接法向辐射(Direct normal irradiance,DNI)的变化影响光热发电的可靠性和效率。以西北某光热电站为研究对象,提出一种聚类、集合经验模态分解(Ensemble empirical mode decomposition,EEMD)、主成分分析(Principal component ana... 太阳直接法向辐射(Direct normal irradiance,DNI)的变化影响光热发电的可靠性和效率。以西北某光热电站为研究对象,提出一种聚类、集合经验模态分解(Ensemble empirical mode decomposition,EEMD)、主成分分析(Principal component analysis,PCA)和长短期记忆(Long short-term memory,LSTM)神经网络与误差补偿的光热电站短期DNI预测模型。首先,充分考虑影响DNI的环境因素,研究气象参数与DNI间的关系,利用近邻传播(Affinitypropagation,AP)聚类算法得到同一天气下的典型日,利用EEMD将原始DNI序列进行分解得到各子模态,降低序列的非平稳性;其次,利用PCA得到关键影响因子,使原始序列相关性和冗余性降低,减少模型输入维度;然后,利用LSTM网络对各分解子模态建模预测得到初始预测DNI序列,将其与真实序列作差,得到两者间的误差序列,重新建立LSTM网络对误差序列进行预测,即误差补偿;最后,将初始预测DNI与误差序列求和,得到最终的预测模型,实现对光热电站短期DNI的预测。预测结果表明,该预测模型效果较好,预测精度达94%。 展开更多
关键词 直接法向辐射 光热发电 集合经验模态分解 主成分分析 长短期记忆神经网络 误差补偿
在线阅读 下载PDF
基于COOT算法的VMD-HPCA-GRU超短期风电功率预测
3
作者 何星月 杨靖 +2 位作者 朱兆强 杨斌 覃涛 《北京航空航天大学学报》 北大核心 2025年第5期1716-1725,共10页
为了提高超短期风电功率的预测精度,提出了一种基于COOT算法优化的变分模态分解(VMD)、分层主成分分析(hierarchical principal components analysis,HPCA)与门控循环单元神经网络(GRU)的组合预测模型。首先,利用能量差值法确定变分模... 为了提高超短期风电功率的预测精度,提出了一种基于COOT算法优化的变分模态分解(VMD)、分层主成分分析(hierarchical principal components analysis,HPCA)与门控循环单元神经网络(GRU)的组合预测模型。首先,利用能量差值法确定变分模态分解子模态数,从而将具有强非线性的原始功率序列分解为一组相对平稳的子模态。其次,利用灰色关联度分析计算高维气象特征与功率序列的关联度值并进行排序分层,利用主成分分析提取各分层特征变量的第一主成分,实现对高维气象特征的降维。最后,引入COOT算法对门控循环单元预测模型的超参数进行优化,加速模型收敛速度,提高模型预测精度。对贵州某风电场的实测数据进行仿真分析,结果表明:相较于传统GRU模型的预测结果,所提方法的均方根误差、平均绝对误差、平均绝对百分误差分别下降了67.41%、72.25%、45.69%,且预测精度高于其他4种组合预测模型,有效提高了超短期风电功率预测精度。 展开更多
关键词 风电功率预测 变分模态分解 分层主成分分析 COOT算法 门控循环单元
在线阅读 下载PDF
基于PCA和自联想神经网络的核环境冷挤压切割刀具状态监测
4
作者 袁沛 蒋君侠 +2 位作者 马飞 金杰峰 来建良 《浙江大学学报(工学版)》 北大核心 2025年第3期606-615,共10页
在高放射性环境中,传感器部署受限,传动链噪声干扰,冷挤压切割刀具一致性差.为此提出基于外置电机旋转轴与进给轴电机扭矩信号的时频域统计、主成分分析(PCA)与自联想神经网络(AANN)相结合的刀具状态监测模型.基于旋转电机及进给电机扭... 在高放射性环境中,传感器部署受限,传动链噪声干扰,冷挤压切割刀具一致性差.为此提出基于外置电机旋转轴与进给轴电机扭矩信号的时频域统计、主成分分析(PCA)与自联想神经网络(AANN)相结合的刀具状态监测模型.基于旋转电机及进给电机扭矩波形提取时域统计特征及小波包能量特征形成原始训练集,利用原始训练集初步训练AANN模型,使用PCA重构原始训练集用于优化AANN模型局部结构参数,形成PCA-AANN刀具状态监测模型.基于实际样机的切割试验采集扭矩数据,对提出的PCA-AANN和现有AANN模型进行分析对比,结果表明PCA的引入有助于提高AANN模型鲁棒性,能有效降低刀具工作状态误报率,实现放射性环境下刀具状态的准确监测.所提方法为放射性环境中类似长传动链设备的状态监测提供了借鉴. 展开更多
关键词 放射性 刀具状态监测 时域统计 小波包分解 主成分分析 自联想神经网络
在线阅读 下载PDF
应用奇异值分解(SVD)-主成分分析(PCA)组合模型定量圈定与评价腾冲地块锡钨和铅锌多金属找矿靶区
5
作者 郑澳月 费金娜 +3 位作者 陈永清 宁妍云 曹一琳 赵鹏大 《地学前缘》 北大核心 2025年第1期283-301,共19页
成矿元素或元素组在一个地质单元中的富集是成岩和成矿地质过程多阶段作用的产物。基于水系沉积物地球化学数据,主成分分析(principal component analysis,PCA)可识别成矿元素组。奇异值分解(singular value decomposition,SVD)可将成... 成矿元素或元素组在一个地质单元中的富集是成岩和成矿地质过程多阶段作用的产物。基于水系沉积物地球化学数据,主成分分析(principal component analysis,PCA)可识别成矿元素组。奇异值分解(singular value decomposition,SVD)可将成矿元素组主成分得分进一步分解为两个部分:(1)成矿元素组合区域异常分量,能够表征在地壳演化过程中,由各种地质作用(岩浆作用、沉积作用和/或变质作用)形成的有利于成矿的高背景区域;(2)成矿元素组合局部异常分量,能够表征成矿作用引起的,叠加在成矿元素组合区域异常分量之上的成矿元素组合局部异常分量,应用局部异常分量能够识别找矿靶区。本次研究,首先基于国家1∶200000水系沉积物地球化学数据,应用主成分分析建立不同类型的成矿元素组;其次,利用SVD从成矿元素组的主成分得分中识别出不同类型成矿过程引起的成矿元素组合局部异常分量;最后,应用局部异常分量识别找矿靶区。最终在腾冲地块圈定15处找矿靶区,其中Sn-W找矿靶区8处,Pb-Zn-Ag找矿靶区7处。预测Sn-W潜在资源量915 Mt,Pb-Zn-Ag潜在资源量792 Mt。 展开更多
关键词 SVD PCA 成矿元素组合异常分量 地球化学块体 锡钨和铅锌多金属矿 腾冲地块 西南地区
在线阅读 下载PDF
基于改进张量链分解的多聚类算法
6
作者 张宏俊 张泽宇 +2 位作者 张颖娇 叶昊 潘高军 《电信科学》 北大核心 2025年第6期103-120,共18页
随着大数据时代的到来,高阶数据的有效表示和分析成为一项重大挑战。基于此,聚焦于张量分解技术在多聚类算法中的应用,特别是针对大型多源异构数据集的处理,深入研究并改进了张量链(tensor train,TT)分解方法,通过引入新的优化策略,显... 随着大数据时代的到来,高阶数据的有效表示和分析成为一项重大挑战。基于此,聚焦于张量分解技术在多聚类算法中的应用,特别是针对大型多源异构数据集的处理,深入研究并改进了张量链(tensor train,TT)分解方法,通过引入新的优化策略,显著提高了其在多聚类任务中的性能。创新主要体现在两个方面:一是提出了一种新的张量分解框架,该框架通过优化目标函数,有效降低了存储成本并提高了计算效率;二是将改进的张量分解技术应用于3种主要的多聚类算法中,包括自加权多视图聚类(self-weighted multi-view clustering,SwMC)、潜在多视图子空间聚类(latent multi-view subspace clustering,LMSC)和具有完整性感知相似性的多视图子空间聚类(multi-view subspace clustering with intactness-aware similarity,MSC IAS),显著提升了聚类的准确性和效率。为了验证方法的有效性,在7个真实的数据集上进行了全面的实验评估,包括准确性(accuracy,ACC)、归一化互信息(normalized mutual information,NMI)和纯度等3个指标。实验结果表明,所提出的方法在提取有意义的模式和提高聚类性能方面具有显著优势。 展开更多
关键词 张量 多聚类算法 张量分解 多源异构数据 主成分分析
在线阅读 下载PDF
融合低秩预分离与随机抖动机制的非凸型TRPCA算法
7
作者 潘昱妍 张德 李壮举 《智能系统学报》 北大核心 2025年第4期822-837,共16页
为了解决张量鲁棒主成分分析(tensor robust principal component analysis,TRPCA)还原低秩结构时同等收缩奇异值造成的信息提取偏差问题,本文考虑区别对待奇异值,使用非凸加权张量Schatten-p范数(0<p<1)分析张量数据,可减少对奇... 为了解决张量鲁棒主成分分析(tensor robust principal component analysis,TRPCA)还原低秩结构时同等收缩奇异值造成的信息提取偏差问题,本文考虑区别对待奇异值,使用非凸加权张量Schatten-p范数(0<p<1)分析张量数据,可减少对奇异值的惩罚。为解决数据受损严重难以恢复的问题,提出低秩预分离的方法实现近似低秩部分和近似稀疏部分的预先分离;为增强高阶张量之间相关性同时降低数据对特定噪声的敏感性,提出随机抖动正则器的机制对预分离后成分分别选取随机区域优化,利用噪声信息的随机性来正则化算法得以约束模型的复杂度;最后使用不同类型的图像数据集,包括彩色图像、核磁共振图像、高光谱及多光谱图像和灰度视频,进行高维数据恢复实验。结果表明该方法在图像恢复性能上明显优于其他TRPCA方法,并且在数据受损严重时同样具有优势,有效提取主成分信息的同时减小数据对特定噪声的依赖,具有较强的鲁棒性和适应性,可为TRPCA方法在图像恢复领域中提供参考。 展开更多
关键词 主成分分析 张量 图像去噪 图像处理 机器学习 计算机应用 信号处理 奇异值分解
在线阅读 下载PDF
白条猪价格预测模型构建 被引量:4
8
作者 刘合兵 华梦迪 +1 位作者 席磊 尚俊平 《河南农业大学学报》 CAS CSCD 北大核心 2024年第1期123-131,共9页
【目的】增强农产品价格预测准确度,为农产品价格的有效预测提供参考。【方法】以河南省白条猪每周平均批发价格为研究对象,提出一种基于序列分解、主成分分析和神经网络(CEEMDAN-PCA-CNN-LSTM)的白条猪价格预测方法。首先,使用自适应... 【目的】增强农产品价格预测准确度,为农产品价格的有效预测提供参考。【方法】以河南省白条猪每周平均批发价格为研究对象,提出一种基于序列分解、主成分分析和神经网络(CEEMDAN-PCA-CNN-LSTM)的白条猪价格预测方法。首先,使用自适应白噪声完全集合模态分解方法(CEEMDAN)对白条猪价格序列进行分解;其次,选用皮尔逊相关系数筛选影响价格波动的相关因素;再次,利用主成分分析(PCA)对影响因素及分解得到的子序列降维处理并作为原始价格序列的特征值,并行输入到作为编码器的卷积神经网络(CNN)中进行特征提取;最后,引入长短期记忆网络(LSTM)作为解码器输出得到预测结果。将该方法应用于河南省白条猪每周平均价格数据,与LSTM、门控循环单元(GRU)、CNN、基于卷积的长短期记忆网络(ConvLSTM)模型进行比较。【结果】CEEMDAN-PCA-CNN-LSTM组合模型预测方法得到的平均绝对误差分别降低了44.95%、27.30%、28.13%、43.17%。【结论】CEEMDAN-PCA-CNN-LSTM模型对于河南省白条猪市场价格的预测性能更优,有助于相关部门针对河南省白条猪价格波动做出科学决策。 展开更多
关键词 价格预测 自适应白噪声完全集合模态分解 主成分分析 神经网络 组合模型
在线阅读 下载PDF
基于双滑模的飞机燃油油量传感器故障监测方法
9
作者 曲鸣飞 张鑫 于鑫 《传感技术学报》 CAS CSCD 北大核心 2024年第11期1952-1957,共6页
飞机燃油油量传感器故障监测由于输出信号的不稳定性,导致故障正确识别率低、残差监测值与标准残差间误差大,提出基于双滑模的飞机燃油油量传感器故障监测方法。以故障产生原因分析结果为基础,引入双滑膜,利用等效输出误差注入原理建立... 飞机燃油油量传感器故障监测由于输出信号的不稳定性,导致故障正确识别率低、残差监测值与标准残差间误差大,提出基于双滑模的飞机燃油油量传感器故障监测方法。以故障产生原因分析结果为基础,引入双滑膜,利用等效输出误差注入原理建立双滑膜观测器,结合李雅普诺夫矩阵关系优化双滑膜观测器测量矩阵,采集故障信息;通过小波包分解法分解采集的信息,提取特征;引入核主成分分析法,建立标准主成分信息模型,利用采集信息在主成分模型上的投影,对比传感器信息与核主成分信息的偏移,实现飞机燃油油量传感器故障监测。仿真结果表明,所提方法的故障正确识别率为100%,且残差监测值与标准残差间最大仅存在0.02的误差,该方法能够有效监测飞机燃油油量传感器故障。 展开更多
关键词 传感器 故障监测 滑膜观测器 李雅普诺夫矩阵 小波包分解法 核主成分分析法
在线阅读 下载PDF
基于PCA和EEMD的柔性直流配电网故障选线算法 被引量:2
10
作者 胡亚辉 韦延方 +2 位作者 王鹏 王晓卫 曾志辉 《电源学报》 CSCD 北大核心 2024年第2期305-315,共11页
柔性直流故障选线技术的发展对直流配电网有着至关重要的作用。本文针对现有柔性直流故障存在的可利用的故障信息较少等问题,提出了一种新算法,该算法有效利用了集合经验模态分解EEMD(ensemble empirical mode decomposition)算法、主... 柔性直流故障选线技术的发展对直流配电网有着至关重要的作用。本文针对现有柔性直流故障存在的可利用的故障信息较少等问题,提出了一种新算法,该算法有效利用了集合经验模态分解EEMD(ensemble empirical mode decomposition)算法、主成分分析PCA(principal component analysis)和相关系数各自的优势。首先,提取暂态电流样本信号,采用EEMD得到以正交基函数表示的数据矩阵;接着,基于PCA进行该矩阵元素特征向量到主成分的转换,将样本信号投影到主元空间实现坐标变换,从而得到对样本数据的聚类和识别结果;最后,基于相关系数进行故障线路判别。本文算法的EEMD揭露了原始历史数据的内在变化规律,PCA能够有效选择故障有效特征。大量实验表明,该新算法准确有效,与现有其他方法相比,在故障信息不明显、不同过渡电阻方面具有优势。 展开更多
关键词 柔性直流配电网 集合经验模态分解 主成分分析 故障选线 相关系数
在线阅读 下载PDF
基于EEMD和特征降维的非侵入式负荷分解方法研究 被引量:1
11
作者 汪敏 张孟健 +3 位作者 禹洪波 熊炜 袁旭峰 邹晓松 《电测与仪表》 北大核心 2024年第6期80-86,共7页
针对现有非侵入式居民用电负荷监测缺乏对独立负荷完整、全面的分解方法,导致用电信息的完整性得不到保证的不足,提出一种基于集合经验模态分解(ensemble empirical mode decomposition,EEMD)和Pearson-PCA改进的盲源分离算法。利用EEM... 针对现有非侵入式居民用电负荷监测缺乏对独立负荷完整、全面的分解方法,导致用电信息的完整性得不到保证的不足,提出一种基于集合经验模态分解(ensemble empirical mode decomposition,EEMD)和Pearson-PCA改进的盲源分离算法。利用EEMD对总功率信号分解,以消除经验模态在分解过程中易出现模态混叠的现象,并得到一系列固有模式函数(intrinsic mode functions,IMF)。结合Pearson相关系数和主成分分析法(principal component analysis,PCA),提出Pearson-PCA改进算法对IMF进行降维,剔除相关性较弱的IMF分量,以及估计源信号数目。运用快速独立分量分析(fast independent component analysis,FastICA)对降维后的IMF进行分解,计算得出源功率信号。将提出的改进算法应用于非侵入式居民用电负荷分解问题,采用能量分解数据集(reference energy disaggregation data,REDD)进行实验仿真。实验结果表明:在不同用电场景下,提出的改进算法均具有较好的分解效果。 展开更多
关键词 非侵入式负荷分解 单通道盲源分离 集合经验模态分解 相关性过滤 主成分分析
在线阅读 下载PDF
基于数据驱动的离心泵轴承特征分析及寿命预测 被引量:3
12
作者 苏皓南 黄倩 +2 位作者 胡波 付强 朱荣生 《机电工程》 CAS 北大核心 2024年第6期941-955,共15页
离心泵是工业中能量转换和流体输送的核心设备,其部件滚动轴承的可靠性对整个机组的安全运行尤为关键。为了解决目前滚动轴承寿命预测问题,对滚动轴承剩余寿命的最佳预测方案进行了研究。首先,从数据驱动和试验出发,利用试验台采集所得... 离心泵是工业中能量转换和流体输送的核心设备,其部件滚动轴承的可靠性对整个机组的安全运行尤为关键。为了解决目前滚动轴承寿命预测问题,对滚动轴承剩余寿命的最佳预测方案进行了研究。首先,从数据驱动和试验出发,利用试验台采集所得的离心泵轴承正常及故障状态下的数据,分析了时域、频域、时频域各特征在不同工况中的表现差异,发现了时域特征、频域特征、小波包分解能量特征、完全自适应噪声完备集合经验模态分解(CEEMDAN)能量特征可以捕捉到不同工况下的故障信息;然后,以单调性、趋势性指标加权分数为依据,结合特征的敏感性分析结果,优选出了轴承在全寿命周期中表现突出的12个特征,经核主成分分析(KPCA)-长短期记忆网络(LSTM)降维处理后,构建出了能够表征离心泵轴承退化过程的一维特征量;最后,对比分析了LSTM网络、反向传播(BP)网络和卷积神经(CNN)网络的预测效果。研究结果表明:LSTM网络的均方根误差(RMSE)为0.402,平均绝对百分比误差(MAPE)为0.332,预测精度在三者中最好,模型平均训练时间为12.6 s,可见LSTM网络在预测精度及模型训练时间上更具优势。 展开更多
关键词 叶片式泵 滚动轴承 完全自适应噪声完备集合经验模态分解 核主成分分析 长短期记忆网络 轴承退化过程
在线阅读 下载PDF
基于PCA‑VMD‑MVO‑SVM的短期光伏输出功率预测方法 被引量:3
13
作者 邹港 赵斌 +2 位作者 罗强 梁告 王力 《电力科学与技术学报》 CAS CSCD 北大核心 2024年第5期163-171,共9页
为了提高光伏输出功率短期预测的准确性和可靠性,提出一种基于主成分分析法(principal component analysis,PCA)、变分模态分解法(variational mode decomposition,VMD)和多元宇宙算法(multi verse optimizer,MVO)对支持向量机(support ... 为了提高光伏输出功率短期预测的准确性和可靠性,提出一种基于主成分分析法(principal component analysis,PCA)、变分模态分解法(variational mode decomposition,VMD)和多元宇宙算法(multi verse optimizer,MVO)对支持向量机(support vector machine,SVM)进行优化的光伏输出功率短期预测组合模型。先利用PCA具有的数据分析能力和VMD具有的数据分解性能,对多维训练数据进行降维和分解;再将提取后的数据输入由MVO算法优化的SVM预测模型,得到不同本征模态的光伏输出功率预测分量;最后,将各预测分量的结果进行叠加。研究结果表明:该模型在晴天、多云和阴雨天时的平均绝对百分比误差分别为0.7453%、0.5105%和1.0156%。以多云天气为例,该模型的平均绝对百分比误差比MVO‐SVM、VMD‐MVO‐SVM、PCA‐MVO‐SVM模型的分别降低了3.8207%、2.9173%和1.8438%。 展开更多
关键词 光伏发电 短期功率预测 主成分分析 变分模态分解 多元宇宙算法 支持向量机
在线阅读 下载PDF
无线传感网络多源数据特征融合方法研究 被引量:1
14
作者 陈宏 蒋文贤 +1 位作者 黄丽萍 余翀翀 《传感技术学报》 CSCD 北大核心 2024年第12期2131-2136,共6页
在无线传感网络中,不同的传感器节点可能会收集到重叠或相似的数据,造成计算、存储和传输资源的浪费。为此,提出一种无线传感网络多源数据特征融合方法。结合互补集合经验模态分解和小波阈值去噪方法,在保留数据主要特征的同时去除噪声... 在无线传感网络中,不同的传感器节点可能会收集到重叠或相似的数据,造成计算、存储和传输资源的浪费。为此,提出一种无线传感网络多源数据特征融合方法。结合互补集合经验模态分解和小波阈值去噪方法,在保留数据主要特征的同时去除噪声。通过主成分分析提取多源数据的第一层和第二层特征,并将其级联为最终提取的多源数据特征。采用模糊数学中的最大最小贴近度描述不同特征之间的距离,实现多源数据特征融合。仿真结果表明,所提方法应用后的节点死亡率低于5%,融合延迟小于4 ms,平均节点能耗保持在4.5 J以下,不同场景下的特征融合精度高于86.3%。表明所提方法具有良好的多源数据特征融合性能,可以有效地提高无线传感网络的数据传输性能。 展开更多
关键词 无线传感网络 多源数据特征 特征融合 经验模态分解 小波阈值去噪 主成分分析 亲信度
在线阅读 下载PDF
基于同态加密的隐私保护主成分分析方法
15
作者 张金斗 陈经纬 +1 位作者 吴文渊 冯勇 《计算机科学》 CSCD 北大核心 2024年第8期387-395,共9页
在现实生活中,不同的行业之间,甚至同行业不同部门之间的数据并不互通,随着计算机算力的提升,制约模型训练效果的不是算力而是数据量。因此,想要得到更好的算法模型,仅靠某一方的数据是不够的,需要两方或者多方的参与,这就要求对各方的... 在现实生活中,不同的行业之间,甚至同行业不同部门之间的数据并不互通,随着计算机算力的提升,制约模型训练效果的不是算力而是数据量。因此,想要得到更好的算法模型,仅靠某一方的数据是不够的,需要两方或者多方的参与,这就要求对各方的数据进行隐私保护。除此之外,随着收集的数据越来越详细,数据的维数也越来越大。面对高维的数据,数据降维是不可缺少的环节,而在数据降维方面,主成分分析(Principal Component Analysis,PCA)是常用的手段。当拥有数据的两方想要合作进行隐私保护的数据降维时,同态加密技术是一种解决办法。同态加密技术可以在保护数据隐私的前提下对加密数据进行计算,可以用在加密数据的PCA上。针对上述应用场景,利用CKKS同态加密方案,通过幂法迭代的SVD技术设计了一种两方加密数据进行PCA的方案,在保护两方数据隐私的前提下实现数据降维的目的;通过改进传统幂法迭代步骤,避免了代价高昂的同态密文除法运算,使得在选取较小的加密参数时,也能支持更多的幂法迭代次数,从而在缩短同态计算时间的同时提高计算精度。在公共数据集上进行测试,并与现有方案进行对比,该方案在计算耗时上缩短了约80%,与明文计算结果的均方误差缩减到1%以内。 展开更多
关键词 同态加密 隐私保护 主成分分析 奇异值分解 幂法
在线阅读 下载PDF
基于特征组合优化的工业互联网恶意行为实时检测方法 被引量:1
16
作者 胡向东 张琴 《电子学报》 EI CAS CSCD 北大核心 2024年第9期3075-3085,共11页
工业互联网中节点数据具有高维、冗余和海量等特性,传统的恶意行为检测模型无法对工业互联网恶意攻击行为做出快速且准确的判断,提出基于特征组合优化的工业互联网恶意行为实时检测方法.采用改进的相关性快速过滤算法和基于奇异值分解... 工业互联网中节点数据具有高维、冗余和海量等特性,传统的恶意行为检测模型无法对工业互联网恶意攻击行为做出快速且准确的判断,提出基于特征组合优化的工业互联网恶意行为实时检测方法.采用改进的相关性快速过滤算法和基于奇异值分解的主成分分析算法对工业互联网恶意行为样本数据进行特征组合优化,基于对称不确定性信息度量指标和近似马尔科夫毯准则进行特征相关性计算、冗余特征识别与排除,通过参数特征维度的不同配置得到若干候选特征组合;利用决策树评估器筛选出准确率最高的候选特征组合;通过奇异值分解的主成分分析进一步进行特征降维,得到低维高信息量的最优特征组合;结合极端梯度提升算法和优化的特征组合对工业互联网恶意行为样本进行分类,基于密西西比州立大学多分类电力系统攻击样本数据对本文方法进行了验证;实验结果表明,特征组合优化检测模型训练时间可缩减57.53%,单个样本的平均检测时间为0.002 ms,可减少23.99%,基于特征组合优化的检测模型的准确率、召回率和F1值较特征优化前分别提升了1.11%、1.25%和1.01%.本文方法的突出优势表现为在提升模型检测效果的同时可明显降低模型检测时间,能更好适应工业互联网的实时性要求. 展开更多
关键词 工业互联网 改进的相关性快速过滤算法 奇异值分解的主成分分析 特征组合优化 极端梯度提升 恶意行为实时检测
在线阅读 下载PDF
变频器负载回路串联故障电弧检测及选线方法
17
作者 蔡佳成 高洪鑫 +2 位作者 王智勇 徐佳宁 彭继慎 《电子测量与仪器学报》 CSCD 北大核心 2024年第7期247-256,共10页
串联故障电弧的高温是引发电气火灾的主要原因之一,针对工业变频器负载回路中串联故障电弧尚无有效保护手段的问题,提出了一种新的串联故障电弧检测及选线方法。首先,针对工业领域常用的三相变频器负载回路开展了不同线路中发生串联故... 串联故障电弧的高温是引发电气火灾的主要原因之一,针对工业变频器负载回路中串联故障电弧尚无有效保护手段的问题,提出了一种新的串联故障电弧检测及选线方法。首先,针对工业领域常用的三相变频器负载回路开展了不同线路中发生串联故障电弧的实验;其次,利用基于能量收敛原则改进的变分模态分解将变频器前端A相电流信号自适应分解为多个模态分量,依次将单个模态分量乘以能量系数并重构,得到多个电流信号的特征增强信号,并建立特征矩阵;再次,对特征矩阵进行分块,利用核主成分分析对每块矩阵进行降维,并对降维信号组成的矩阵进行二次降维构建故障特征向量;最后,利用鹈鹕算法优化的支持向量机对串联故障电弧进行检测及选线。结果表明:该方法仅通过分析变频器前端A相电流可以实现变频器整个回路中6条线路的串联故障电弧检测及选线,检测及选线准确率均达到98%以上。 展开更多
关键词 故障电弧 故障检测及选线 变分模态分解 核主成分分析 支持向量机
在线阅读 下载PDF
基于改进EMD-小波包的爆破振动信号降噪方法研究 被引量:9
18
作者 闫鹏 张云鹏 +2 位作者 侯善营 张为为 杨曦 《振动与冲击》 EI CSCD 北大核心 2024年第11期264-271,287,共9页
针对经验模态分解(empirical mode decomposition, EMD)存在模态混叠和降噪效果不佳的问题,依据分解—正交—聚类—降噪—重构的思想,提出了改进EMD-小波包的爆破振动信号降噪方法。该方法融合了核主成分分析的正交性、K-means算法的聚... 针对经验模态分解(empirical mode decomposition, EMD)存在模态混叠和降噪效果不佳的问题,依据分解—正交—聚类—降噪—重构的思想,提出了改进EMD-小波包的爆破振动信号降噪方法。该方法融合了核主成分分析的正交性、K-means算法的聚类特性以及小波包的降噪优势,不仅可以消除EMD的模态混叠,也具有良好的降噪效果。研究结果表明:与自适应噪声完备集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise analysis, CEEMDAN)和EMD方法相比,在模拟信号降噪试验中,改进EMD-小波包方法的信噪比(7.9 dB)最大,均方根误差(2.96)最小。在实测爆破振动信号降噪中,改进EMD-小波包方法降噪后的信号与原始信号相关系数最大为0.91。改进EMD-小波包和CEEMDAN方法的降噪效果相对理想,且改进EMD-小波包方法对10~60 Hz低频信号能量保存效果较好,对60 Hz以上中高频噪声的滤除效果最好。 展开更多
关键词 爆破振动信号 经验模态分解(EMD) 核主成分分析(KPCA) K-MEANS算法 小波包 降噪
在线阅读 下载PDF
PCA优化CEEMD的DSQ水管倾斜仪信号随机噪声压制方法
19
作者 郭晓菲 欧同庚 刘天龙 《大地测量与地球动力学》 CSCD 北大核心 2024年第9期978-984,共7页
提出一种基于主成分分析(PCA)优化完备集合经验模态分解(CEEMD)的DSQ水管倾斜仪信号随机噪声压制方法CEEMD-PCA。该方法融合了相关系数、分布熵、MSE、R^(2)、SSE、RMSE、MAE、MAPE等8个IMF分量质量评价指标,借助PCA实施指标值矩阵的降... 提出一种基于主成分分析(PCA)优化完备集合经验模态分解(CEEMD)的DSQ水管倾斜仪信号随机噪声压制方法CEEMD-PCA。该方法融合了相关系数、分布熵、MSE、R^(2)、SSE、RMSE、MAE、MAPE等8个IMF分量质量评价指标,借助PCA实施指标值矩阵的降维压缩,将其转化为一个能代表全部不同类型指标特点的新参数,并构建IMF分量质量综合评价函数,根据分数排名结果完成原始含噪信号的线性重构。仿真信号和实测信号去噪实验结果皆表明,CEEMD-PCA模型优于卡尔曼滤波、70阶低通FIR滤波等经典模型,能提高原始信号的信噪比,精准完成信号重构,更好地保留有效成分。 展开更多
关键词 DSQ水管倾斜仪 随机噪声压制 完备集合经验模态分解 主成分分析 特征融合
在线阅读 下载PDF
基于BFAST时间序列分解与分段建模的混凝土坝多测点变形定量分析方法
20
作者 郭张军 陈容 《水电能源科学》 北大核心 2024年第9期130-133,216,共5页
大坝运行环境复杂,其变形与外部荷载之间往往存在明显的非线性关系。为此,提出一种基于BFAST时间序列分解与分段建模的混凝土坝多测点变形定量分析方法,基于重力坝垂线监测数据,首先使用主成分分析提取多个测点的综合位移;其次使用BFAS... 大坝运行环境复杂,其变形与外部荷载之间往往存在明显的非线性关系。为此,提出一种基于BFAST时间序列分解与分段建模的混凝土坝多测点变形定量分析方法,基于重力坝垂线监测数据,首先使用主成分分析提取多个测点的综合位移;其次使用BFAST时间序列分解方法将综合位移分解为季节性和趋势性两部分;然后通过合理选择改变点,建立分段统计回归模型,分时段量化各环境量对大坝位移的影响;最后通过对安康水电站水平位移规律的分时段定量分析验证了所提方法可行、有效。研究结果为更好地分析大坝变形性态演变历程和定量解释大坝变形机理提供了有力的技术支持。 展开更多
关键词 BFAST 时间序列分解 突变检测 大坝安全监控 主成分分析
在线阅读 下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部