In recent years, there has been an increase of interest in the flow of gases at relatively high pressures and high temperatures. Hydrodynamic calculation of the energy losses in the flow of gases in conduits, as well ...In recent years, there has been an increase of interest in the flow of gases at relatively high pressures and high temperatures. Hydrodynamic calculation of the energy losses in the flow of gases in conduits, as well as through the porous media constituting natural petroleum reservoirs, requires knowledge of the viscosity of the fluid at the pressure and temperature involved. Although there are numerous publications concerning the viscosity of methane at atmospheric pressure, there appears to be little information available relating to the effect of pressure and temperature upon the viscosity. A survey of the literature reveals that the disagreements between published data on the viscosity of methane are common and that most investigations have been conducted over restricted temperature and pressure ranges. Experimental viscosity data for methane are presented for temperatures from 320 to 400 K and pressures from 3000 to 140000 kPa by using falling body viscometer. A summary is given to evaluate the available data for methane, and a comparison is presented for that data common to the experimental range reported in this paper. A new and reliable correlation for methane gas viscosity is presented. Predicted values are given for temperatures up to 400 K and pressures up to 140000 kPa with Average Absolute Percent Relative Error (EABS) of 0.794.展开更多
A critical first step in establishing biosphere reserves--under the Man and Biosphere Programme of UNESCO--is to generate baseline information for future courses of action. The present study aims to assess the structu...A critical first step in establishing biosphere reserves--under the Man and Biosphere Programme of UNESCO--is to generate baseline information for future courses of action. The present study aims to assess the structure and composition of forests--along with anthro- pogenic pressures mounting on these forests in the buffer zone of one such biosphere reserves--the Pachmarhi bio- sphere reserve of India. The quadrat method was employed for sampling vegetation, and information on anthropogenic pressures was collected by conducting interviews with local people and forest officials and collecting it from secondary sources. A total of 39 tree species were sampled in 82 quadrats; of these 26 tree species were in standing stage, 25 in sapling, and 35 in seedling. Chloroxylon swi- etenia emerged as the most dominant tree species having highest importance value index, followed by Tectona grandis, Terminalia tomentosa, and Hardwickia binata. Nine tree species and their saplings, including Sterculia urens and Terminalia arjuna, were exploited so badly that they were only found in the seedlings stage. The unavail- ability of standing trees of 12 important tree species including Aegle marmelos and Phyllanthus emblicaindicates the intensity and gravity of anthropogenic pres- sures on these important tree species. If the present anthropogenic pressure continues, which has inhibited the regeneration of several tree species, then substantial neg- ative ecological and societal consequences can be expected.展开更多
The laser induced plasma dynamics of graphite material are investigated by optical emission spectroscopy. Abla- tion and excitation of the graphite material is performed by using an 1064nm Nd:YAG laser in different a...The laser induced plasma dynamics of graphite material are investigated by optical emission spectroscopy. Abla- tion and excitation of the graphite material is performed by using an 1064nm Nd:YAG laser in different ambient pressures. Characteristics of graphite spectra as line intensity variations and signal-to-noise ratio are presented with a main focus on the influence of the ambient pressure on the interaction of laser-induced graphite plasma with an ambient environment. Atomic emission lines are utilized to investigate the dynamical behavior of plasma, such as the excitation temperature and electron density, to describe emission differences under different ambient conditions. The excitation temperature and plasma electron density are the primary factors which contribute to the differences among the atomic carbon emission at different ambient pressures. Reactions between the plasma species and ambient gas, and the total molecular number are the main factors influencing molecular carbon emis- sion. The influence of laser energy on the plasma interaction with environment is also investigated to demonstrate the dynamical behavior of carbon species so that it can be utilized to optimize plasma fluctuations.展开更多
Because ring-stiffened cylindrical shell structures have many merits, they are widely used in many areas. However, as the strength of steel increase continuously, ensuring of the structure stability is becoming more a...Because ring-stiffened cylindrical shell structures have many merits, they are widely used in many areas. However, as the strength of steel increase continuously, ensuring of the structure stability is becoming more and more important. Therefore, it is necessary to carry on a more particular analysis. Based on the understanding and analysis of the characteristics of stability for a ring-stiffened cylindrical shell under uniform external pressure and under external single pressure, the characteristics under different cross uniform external pressures are analyzed, and the regularity of it is also gotten. The curve of stability given various geometrical parameters under different cross uniform external pressures is protracted by the analysis of the theory. The conclusion not only improves the theory structural mechanics, it also was important effects on engineering calculation and design.展开更多
The title problem is systematically analyzed by the differential quadrature (DQ) method. Estimates of the critical buckling loads are obtained for combinations of various boundary conditions, internal and/or external ...The title problem is systematically analyzed by the differential quadrature (DQ) method. Estimates of the critical buckling loads are obtained for combinations of various boundary conditions, internal and/or external Pressures, hole sizes,and rigidity ratios. A comparison is made with existing results for certain cases. Numerical investigation has been carried out with regard to the convergence of the solutions. It is found that accurate results are obtained with only nine or eleven grid points.展开更多
The striation plasmas are usually generated within a positive column of glow discharge,where rich and complex physical interactions are involved,especially,in the medium or high pressures.Along these lines,our work ai...The striation plasmas are usually generated within a positive column of glow discharge,where rich and complex physical interactions are involved,especially,in the medium or high pressures.Along these lines,our work aims to thoroughly investigate the formation and destruction of helium striation plasmas at kPa level pressures.The characteristics of the helium striation plasmas,and especially the optical emission properties are explored.The emission lines of 706.52 nm and391.44 nm related to the energetic electrons and the high-energy metastable helium atoms respectively,were focused on in this work.The formation of striation plasmas in a helium glow discharge,is mainly associated with the instability originating from the stepwise ionization of high-energy metastable state atoms,Maxwellization of the electron distribution functions and gas heating.Additionally,the destruction effect of helium striation plasmas is of great significance when a small amount of nitrogen or oxygen is mixed into the discharge plasmas.The reduction of the mean electron energy and the consumption of the high-energy metastable helium atoms are considered as the underlying reasons for the destruction of striation plasmas.展开更多
In this paper,the kerosene/air rotating detonation engines(RDE)are numerically investigated,and the emphasis is laid on the effects of total pressures and equivalence ratios on the operation characteristics of RDE inc...In this paper,the kerosene/air rotating detonation engines(RDE)are numerically investigated,and the emphasis is laid on the effects of total pressures and equivalence ratios on the operation characteristics of RDE including the initiation,instabilities,and propulsive performance.A hybrid MPI t OpenMP parallel computing model is applied and it is proved to be able to obtain a more effective parallel performance on high performance computing(HPC)systems.A series of cases with the total pressure of 1 MPa,1.5 MPa,2 MPa,and the equivalence ratio of 0.9,1,1.4 are simulated.On one hand,the total pressure shows a significant impact on the instabilities of rotating detonation waves.The instability phenomenon is observed in cases with low total pressure(1 MPa)and weakened with the increase of the total pressure.The total pressure has a small impact on the detonation wave velocity and the specific impulse.On the other hand,the equivalence ratio shows a negligible influence on the instabilities,while it affects the ignition process and accounts for the detonation velocity deficit.It is more difficult to initiate rotating detonation waves directly in the lean fuel operation condition.Little difference was observed in the thrust with different equivalence ratios of 0.9,1,and 1.4.The highest specific impulse was obtained in the lean fuel cases,which is around 2700 s.The findings could provide insights into the understanding of the operation characteristics of kerosene/air RDE.展开更多
The effects of operating parameters on oxidative coupling of methane (OCM) over Na-W-Mn/SiO2 catalyst have been studied at elevated pressures of 0.2, 0.3 and 0.4 MPa under low gaseous hourly space velocity (GHSV) ...The effects of operating parameters on oxidative coupling of methane (OCM) over Na-W-Mn/SiO2 catalyst have been studied at elevated pressures of 0.2, 0.3 and 0.4 MPa under low gaseous hourly space velocity (GHSV) and low temperature conditions. Experimental results show that when the operating pressure is increased, C2+ yield slightly decreases, while the maximum ratio of ethylene to ethane remains unchanged. Moreover, it has been found empirically that increase of pressure does not affect the catalyst behavior permanently, the catalyst recovers its original low pressure performance without hysteresis behavior by reducing the pressure. Under the investigated conditions, when oxygen is completely consumed, the increase of GHSV leads to improvement in C2 selectivity, while C3+ and COx selectivities decrease slightly. The C2+ selectivity increases by increase of nitrogen diluent in the feed, but the C3+ hydrocarbons selectivities decrease with increase of nitrogen since it is possible that further dilution at high pressure may reduce the probability of collision between CH3 and C2+ hydrocarbons. During the stability test at high pressure, the catalyst performance remains unchanged throughout the 20 h running. The fresh and used catalysts were characterized using XRD, SEM and N2 adsorption-desorption methods. It was found that the phase transformation of the support from α-cristobalite to tridymite and quartz does not have obvious effect on catalyst performance at high pressure.展开更多
The diffusion coefficient of natural gas in foamy oil is one of the key parameters to evaluate the feasibility of gas injection for enhanced oil recovery in foamy oil reservoirs. In this paper, a PVT cell was used to ...The diffusion coefficient of natural gas in foamy oil is one of the key parameters to evaluate the feasibility of gas injection for enhanced oil recovery in foamy oil reservoirs. In this paper, a PVT cell was used to measure diffusion coefficients of natural gas in Venezuela foamy oil at high pressures, and a new method for deter- mining the diffusion coefficient in the foamy oil was de- veloped on the basis of experimental data. The effects of pressure and the types of the liquid phase on the diffusion coefficient of the natural gas were discussed. The results indicate that the diffusion coefficients of natural gas in foamy oil, saturated oil, and dead oil increase linearly with increasing pressure. The diffusion coefficient of natural gas in the foamy oil at 20 MPa was 2.93 times larger than that at 8.65 MPa. The diffusion coefficient of the natural gas in dead oil was 3.02 and 4.02 times than that of the natural gas in saturated oil and foamy oil when the pressure was 20 MPa. However, the gas content of foamy oil was 16.9 times higher than that of dead oil when the dissolution time and pressure were 20 MPa and 35.22 h, respectively.展开更多
The self-absorption effect is one of the main factors affecting the quantitative analysis accuracy of laser-induced breakdown spectroscopy.In this paper,the self-absorption effects of laserinduced 7050 Al alloy plasma...The self-absorption effect is one of the main factors affecting the quantitative analysis accuracy of laser-induced breakdown spectroscopy.In this paper,the self-absorption effects of laserinduced 7050 Al alloy plasma under different pressures in air,Ar,and N2have been studied.Compared with air and N2,Ar significantly enhances the spectral signal.Furthermore,the spectral self-absorption coefficient is calculated to quantify the degree of self-absorption,and the influences of gas species and gas pressure on self-absorption are analyzed.In addition,it is found that the spectral intensity fluctuates with the change of pressure of three gases.It can also be seen that the fluctuation of spectral intensity with pressure is eliminated after correcting,which indicates that the self-absorption leads to the fluctuation of spectral intensity under different pressures.The analysis shows that the evolution of optical thin spectral lines with pressure in different gases is mainly determined by the gas properties and the competition between plasma confinement and Rayleigh–Taylor instability.展开更多
The mechanical properties, such as the elastic constants C11, C12, C44, and bulk, Young's, and shear moduli, of a Ga x In1-x As y P1-y alloy lattice matching to a Ga As substrate are calculated for various As concent...The mechanical properties, such as the elastic constants C11, C12, C44, and bulk, Young's, and shear moduli, of a Ga x In1-x As y P1-y alloy lattice matching to a Ga As substrate are calculated for various As concentrations. The calculations are based on the pseudo-potential method within the virtual crystal approximation containing the effective disorder potential. The variations of the studied properties with pressure and temperature are investigated. A comparison between the calculated results and the available published data for binary parent compounds shows that they have good agreement,while the calculated results for the quaternary alloys at various temperature and pressure may be taken as a reference.展开更多
The rock bridges sandwiched in incipiently jointed rock mass were considered as barriers that block the fluid seepage,and provide certain shear strength reservation.For better revealing the influence of hydraulic pres...The rock bridges sandwiched in incipiently jointed rock mass were considered as barriers that block the fluid seepage,and provide certain shear strength reservation.For better revealing the influence of hydraulic pressure on the failure behaviour of rock bridges,direct shear tests were carried out through a newly proposed method on rock samples that contain two parallel incipient joints.By developing the gypsum-silicone pad coupling samples,a conventional triaxial test system was qualified to implement direct shear tests with satisfied sealing capability.The results showed that the rock bridges could be failed through the tensile failure,shear failure and mixed failure mechanism.The hydraulic pressure would facilitate the tensile failure mechanism and induce rougher fracture surfaces;while the normal stress would facilitate the shear failure mechanism and induce less rough fracture.The hydraulic pressure reduced the global shear strength of the rock block through reducing the efficient normal stress applied on the rock bridge area,which was highly dependent on the joint persistence,k.Moreover,because of the iterating occurrence of the hydraulic pressure lag with the fracture propagation,the rock bridge failure stage in the shear stress-shear displacement curves displayed a fluctuation trend.展开更多
Molecular dynamics simulations were used to investigate the influence of pressure on the structural properties and dynamics of magnesium(Mg)during rapid solidification.The dynamics analysis revealed that,with an incre...Molecular dynamics simulations were used to investigate the influence of pressure on the structural properties and dynamics of magnesium(Mg)during rapid solidification.The dynamics analysis revealed that,with an increase in pressure,the dynamics of Mg melt slowed down sharply and the dynamical heterogeneities increased,leading to a denser structure.Atom-level structural analysis using the cluster-type index method suggested that the predominant structure transformed from hexagonal closed-packed to face-centered cubic with increasing pressure from 0 GPa to 5 GPa,and then transformed to the A15 complex crystal structure as the pressure increased above 10 GPa.In addition,the nature of polymorph selection was investigated by analyzing the phonon dispersion of Mg under different pressures.These findings provide a novel insight into polymorphic transitions of Mg under pressure and guide the selection of Mg polymorphs for practical applications.展开更多
Electrical wire explosion is a promising method for the preparation of metal nanopowder, but the properties of metal nanopowder are affected by the second discharge process of electrical wire explosion. The second dis...Electrical wire explosion is a promising method for the preparation of metal nanopowder, but the properties of metal nanopowder are affected by the second discharge process of electrical wire explosion. The second discharge characteristics of aluminum wire electrical ex- plosion under variant argon pressures were studied in a RLC discharge circuit. The results show that the curve of the second discharge voltages versus the pressure presents a U-shape. To clarify the roles of aluminum vapor and argon in the process of the second discharge, a spectrograph and a high speed framing camera were used to study the radiation spectrum and spatial distribution of the electrical explosion plasma. It is observed that argon participates in the second discharge process under low pressure. A discharge channel develops along the surface of the aluminum vapor. Under higher pressure, a second discharge takes place in the aluminum vapor and the discharge channel is inside the aluminum vapor.展开更多
The recent discovery of room temperature superconductivity(283 K)in carbonaceous sulfur hydride(C-S-H)has attracted much interest in ternary hydrogen rich materials.In this report,ternary hydride P-S-H was synthesized...The recent discovery of room temperature superconductivity(283 K)in carbonaceous sulfur hydride(C-S-H)has attracted much interest in ternary hydrogen rich materials.In this report,ternary hydride P-S-H was synthesized through a photothermal-chemical reaction from elemental sulfur(S),phosphorus(P)and molecular hydrogen(H_(2))at high pressures and room temperature.Raman spectroscopy under pressure shows that H_(2)S and PH_(3) compounds are synthesized after laser heating at 0.9 GPa,and a ternary van der Waals compound P-S-H is synthesized with further compression to 4.6 GPa.The P-S-H compound is probably a mixed alloy of PH_(3) and(H_(2)S)_(2)H_(2) with a guest-host structure similar to the C-S-H system.The ternary hydride can persist up to 35.6 GPa at least and shows two phase transitions at approximately 23.6 GPa and 32.8 GPa,respectively.展开更多
In this work,we investigated the influence of air gas pressures on the expansion features of nanosecond laser ablated aluminum plasma in the absence and presence of a nonuniform magnetic field using fast photography.A...In this work,we investigated the influence of air gas pressures on the expansion features of nanosecond laser ablated aluminum plasma in the absence and presence of a nonuniform magnetic field using fast photography.A particular emphasis was given to the plume dynamics(shape,size) with the combined effects of ambient gas pressures and an external magnetic field.Free expansion,sharpening effect,and hemi-spherical structures of the aluminum plasma were observed without a magnetic field under different gas pressures.Analysis of the resulting plume images with the combined effects of air gas pressures and a magnetic field show significant changes,such as plume splitting,elliptical geometry changes,radial expansion,and plume confinement.Furthermore,the total size of the plasma plume with a magnetic field was measured to be smaller than the plasma plume without a magnetic field at several background pressures.展开更多
Solid H_(2)S as the precursor for H_(3)S with incredible superconducting properties under high pressure,has recently attracted extensive attention.Here in this work,we propose two new phases of H_(2)S with P42/n and I...Solid H_(2)S as the precursor for H_(3)S with incredible superconducting properties under high pressure,has recently attracted extensive attention.Here in this work,we propose two new phases of H_(2)S with P42/n and I41/a lattice symmetries in a pressure range of 0 GPa–30 GPa through first-principles structural searches,which complement the phase transition sequence.Further an ab initio molecular dynamics simulation confirms that the molecular phase P2/c of H_(2)S is gradually dissociated with the pressure increasing and reconstructs into a new P2_(1)/m structure at 160 GPa,exhibiting the superconductivity with Tc of 82.5 K.Our results may provide a guidance for the theoretical study of low-temperature superconducting phase of H_(2)S.展开更多
This study presents high pressure phase transitions and equation of states of cerium under pressures up to 51 GPa at room temperature. The angle-dispersive x-ray diffraction experiments are carried out using a high en...This study presents high pressure phase transitions and equation of states of cerium under pressures up to 51 GPa at room temperature. The angle-dispersive x-ray diffraction experiments are carried out using a high energy synchrotron x-ray source. The bulk moduli of high pressure phases of cerium are calculated using the Birch-Mumaghan equation. We discuss and correct several previous controversial conclusions, which are caused by the measurement accuracy or personal explanation. The c/a axial ratio of e-Ce has a maximum value at about 29 GPa, i.e., c/a ≈ 1.690.展开更多
An experiment is carried out to investigate the pressures acting on the hull of a container ship in regular waves,The experimental results are important to develop the theoretical calculation method for the dynamic pr...An experiment is carried out to investigate the pressures acting on the hull of a container ship in regular waves,The experimental results are important to develop the theoretical calculation method for the dynamic pressures.展开更多
The effects of temperature and pressure on laser-induced fluorescence(LIF)of OH are numerically studied under the excitation of A-X(1,0)transition at high pressures.A detailed theoretical analysis is carried out to re...The effects of temperature and pressure on laser-induced fluorescence(LIF)of OH are numerically studied under the excitation of A-X(1,0)transition at high pressures.A detailed theoretical analysis is carried out to reveal the physical processes of LIF.It is shown that high pressure LIF measurements get greatly complicated by the variations of pressure-and temperature-dependent parameters,such as Boltzmann fraction,absorption lineshape broadening,central-frequency shifting,and collisional quenching.Operations at high pressures require a careful choice of an excitation line,and the Q1(8)line in the A-X(1,0)band of OH is selected due to its minimum temperature dependence through the calculation of Boltzmann fraction.The absorption spectra of OH become much broader as pressure increases,leading to a smaller overlap integral and thus smaller excitation efficiency.The central-frequency shifting cannot be omitted at high pressures,and should be taken into account when setting the excitation frequency.The fluorescence yield is estimated based on the LASKIN calculation.Finally,OH-LIF measurements were conducted on flat stoichiometric CH4/air flames at high pressures.And both the numerical and experimental results illustrate that the pressure dependence of fluorescence yield is dominated,and the fluorescence yield is approximately inversely proportional to pressure.These results illustrate the physical processes of OH-LIF and provide useful guidelines for high-pressure application of OH-LIF.展开更多
基金supported by the Research Institute of Petroleum Industry-Kermanshah Campus.
文摘In recent years, there has been an increase of interest in the flow of gases at relatively high pressures and high temperatures. Hydrodynamic calculation of the energy losses in the flow of gases in conduits, as well as through the porous media constituting natural petroleum reservoirs, requires knowledge of the viscosity of the fluid at the pressure and temperature involved. Although there are numerous publications concerning the viscosity of methane at atmospheric pressure, there appears to be little information available relating to the effect of pressure and temperature upon the viscosity. A survey of the literature reveals that the disagreements between published data on the viscosity of methane are common and that most investigations have been conducted over restricted temperature and pressure ranges. Experimental viscosity data for methane are presented for temperatures from 320 to 400 K and pressures from 3000 to 140000 kPa by using falling body viscometer. A summary is given to evaluate the available data for methane, and a comparison is presented for that data common to the experimental range reported in this paper. A new and reliable correlation for methane gas viscosity is presented. Predicted values are given for temperatures up to 400 K and pressures up to 140000 kPa with Average Absolute Percent Relative Error (EABS) of 0.794.
基金funded under the grant IIFM/RP-Int./CPK/2009-11/04
文摘A critical first step in establishing biosphere reserves--under the Man and Biosphere Programme of UNESCO--is to generate baseline information for future courses of action. The present study aims to assess the structure and composition of forests--along with anthro- pogenic pressures mounting on these forests in the buffer zone of one such biosphere reserves--the Pachmarhi bio- sphere reserve of India. The quadrat method was employed for sampling vegetation, and information on anthropogenic pressures was collected by conducting interviews with local people and forest officials and collecting it from secondary sources. A total of 39 tree species were sampled in 82 quadrats; of these 26 tree species were in standing stage, 25 in sapling, and 35 in seedling. Chloroxylon swi- etenia emerged as the most dominant tree species having highest importance value index, followed by Tectona grandis, Terminalia tomentosa, and Hardwickia binata. Nine tree species and their saplings, including Sterculia urens and Terminalia arjuna, were exploited so badly that they were only found in the seedlings stage. The unavail- ability of standing trees of 12 important tree species including Aegle marmelos and Phyllanthus emblicaindicates the intensity and gravity of anthropogenic pres- sures on these important tree species. If the present anthropogenic pressure continues, which has inhibited the regeneration of several tree species, then substantial neg- ative ecological and societal consequences can be expected.
基金Supported by the FRGS under Grant No R.J130000.7809.4F519
文摘The laser induced plasma dynamics of graphite material are investigated by optical emission spectroscopy. Abla- tion and excitation of the graphite material is performed by using an 1064nm Nd:YAG laser in different ambient pressures. Characteristics of graphite spectra as line intensity variations and signal-to-noise ratio are presented with a main focus on the influence of the ambient pressure on the interaction of laser-induced graphite plasma with an ambient environment. Atomic emission lines are utilized to investigate the dynamical behavior of plasma, such as the excitation temperature and electron density, to describe emission differences under different ambient conditions. The excitation temperature and plasma electron density are the primary factors which contribute to the differences among the atomic carbon emission at different ambient pressures. Reactions between the plasma species and ambient gas, and the total molecular number are the main factors influencing molecular carbon emis- sion. The influence of laser energy on the plasma interaction with environment is also investigated to demonstrate the dynamical behavior of carbon species so that it can be utilized to optimize plasma fluctuations.
文摘Because ring-stiffened cylindrical shell structures have many merits, they are widely used in many areas. However, as the strength of steel increase continuously, ensuring of the structure stability is becoming more and more important. Therefore, it is necessary to carry on a more particular analysis. Based on the understanding and analysis of the characteristics of stability for a ring-stiffened cylindrical shell under uniform external pressure and under external single pressure, the characteristics under different cross uniform external pressures are analyzed, and the regularity of it is also gotten. The curve of stability given various geometrical parameters under different cross uniform external pressures is protracted by the analysis of the theory. The conclusion not only improves the theory structural mechanics, it also was important effects on engineering calculation and design.
文摘The title problem is systematically analyzed by the differential quadrature (DQ) method. Estimates of the critical buckling loads are obtained for combinations of various boundary conditions, internal and/or external Pressures, hole sizes,and rigidity ratios. A comparison is made with existing results for certain cases. Numerical investigation has been carried out with regard to the convergence of the solutions. It is found that accurate results are obtained with only nine or eleven grid points.
基金supported by National Natural Science Foundation of China(No.11875039)。
文摘The striation plasmas are usually generated within a positive column of glow discharge,where rich and complex physical interactions are involved,especially,in the medium or high pressures.Along these lines,our work aims to thoroughly investigate the formation and destruction of helium striation plasmas at kPa level pressures.The characteristics of the helium striation plasmas,and especially the optical emission properties are explored.The emission lines of 706.52 nm and391.44 nm related to the energetic electrons and the high-energy metastable helium atoms respectively,were focused on in this work.The formation of striation plasmas in a helium glow discharge,is mainly associated with the instability originating from the stepwise ionization of high-energy metastable state atoms,Maxwellization of the electron distribution functions and gas heating.Additionally,the destruction effect of helium striation plasmas is of great significance when a small amount of nitrogen or oxygen is mixed into the discharge plasmas.The reduction of the mean electron energy and the consumption of the high-energy metastable helium atoms are considered as the underlying reasons for the destruction of striation plasmas.
基金The authors would like to acknowledge the National Natural Science Foundation of China(Grant Nos.11802137,11702143)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX19_0292)+1 种基金the Natural Science Foundation for Young Scientists of Jiangsu Province of China(Grant No.BK20190468)the Fundamental Research Funds for the Central Universities(Grant Nos.30918011343,30919011259,309190112A1).
文摘In this paper,the kerosene/air rotating detonation engines(RDE)are numerically investigated,and the emphasis is laid on the effects of total pressures and equivalence ratios on the operation characteristics of RDE including the initiation,instabilities,and propulsive performance.A hybrid MPI t OpenMP parallel computing model is applied and it is proved to be able to obtain a more effective parallel performance on high performance computing(HPC)systems.A series of cases with the total pressure of 1 MPa,1.5 MPa,2 MPa,and the equivalence ratio of 0.9,1,1.4 are simulated.On one hand,the total pressure shows a significant impact on the instabilities of rotating detonation waves.The instability phenomenon is observed in cases with low total pressure(1 MPa)and weakened with the increase of the total pressure.The total pressure has a small impact on the detonation wave velocity and the specific impulse.On the other hand,the equivalence ratio shows a negligible influence on the instabilities,while it affects the ignition process and accounts for the detonation velocity deficit.It is more difficult to initiate rotating detonation waves directly in the lean fuel operation condition.Little difference was observed in the thrust with different equivalence ratios of 0.9,1,and 1.4.The highest specific impulse was obtained in the lean fuel cases,which is around 2700 s.The findings could provide insights into the understanding of the operation characteristics of kerosene/air RDE.
文摘The effects of operating parameters on oxidative coupling of methane (OCM) over Na-W-Mn/SiO2 catalyst have been studied at elevated pressures of 0.2, 0.3 and 0.4 MPa under low gaseous hourly space velocity (GHSV) and low temperature conditions. Experimental results show that when the operating pressure is increased, C2+ yield slightly decreases, while the maximum ratio of ethylene to ethane remains unchanged. Moreover, it has been found empirically that increase of pressure does not affect the catalyst behavior permanently, the catalyst recovers its original low pressure performance without hysteresis behavior by reducing the pressure. Under the investigated conditions, when oxygen is completely consumed, the increase of GHSV leads to improvement in C2 selectivity, while C3+ and COx selectivities decrease slightly. The C2+ selectivity increases by increase of nitrogen diluent in the feed, but the C3+ hydrocarbons selectivities decrease with increase of nitrogen since it is possible that further dilution at high pressure may reduce the probability of collision between CH3 and C2+ hydrocarbons. During the stability test at high pressure, the catalyst performance remains unchanged throughout the 20 h running. The fresh and used catalysts were characterized using XRD, SEM and N2 adsorption-desorption methods. It was found that the phase transformation of the support from α-cristobalite to tridymite and quartz does not have obvious effect on catalyst performance at high pressure.
基金financial support from the Major Subject of National Science and Technology (2011ZX05032-001)the Fundamental Research Funds for the Central Universities(NO.11CX06022A)
文摘The diffusion coefficient of natural gas in foamy oil is one of the key parameters to evaluate the feasibility of gas injection for enhanced oil recovery in foamy oil reservoirs. In this paper, a PVT cell was used to measure diffusion coefficients of natural gas in Venezuela foamy oil at high pressures, and a new method for deter- mining the diffusion coefficient in the foamy oil was de- veloped on the basis of experimental data. The effects of pressure and the types of the liquid phase on the diffusion coefficient of the natural gas were discussed. The results indicate that the diffusion coefficients of natural gas in foamy oil, saturated oil, and dead oil increase linearly with increasing pressure. The diffusion coefficient of natural gas in the foamy oil at 20 MPa was 2.93 times larger than that at 8.65 MPa. The diffusion coefficient of the natural gas in dead oil was 3.02 and 4.02 times than that of the natural gas in saturated oil and foamy oil when the pressure was 20 MPa. However, the gas content of foamy oil was 16.9 times higher than that of dead oil when the dissolution time and pressure were 20 MPa and 35.22 h, respectively.
基金National Key Research and Development Program of China(Nos.2017YFE0301306,2017YFE0301300,and 2017YFE0301506)Fujian Province Industrial Guidance Project(No.2019H0011).
文摘The self-absorption effect is one of the main factors affecting the quantitative analysis accuracy of laser-induced breakdown spectroscopy.In this paper,the self-absorption effects of laserinduced 7050 Al alloy plasma under different pressures in air,Ar,and N2have been studied.Compared with air and N2,Ar significantly enhances the spectral signal.Furthermore,the spectral self-absorption coefficient is calculated to quantify the degree of self-absorption,and the influences of gas species and gas pressure on self-absorption are analyzed.In addition,it is found that the spectral intensity fluctuates with the change of pressure of three gases.It can also be seen that the fluctuation of spectral intensity with pressure is eliminated after correcting,which indicates that the self-absorption leads to the fluctuation of spectral intensity under different pressures.The analysis shows that the evolution of optical thin spectral lines with pressure in different gases is mainly determined by the gas properties and the competition between plasma confinement and Rayleigh–Taylor instability.
文摘The mechanical properties, such as the elastic constants C11, C12, C44, and bulk, Young's, and shear moduli, of a Ga x In1-x As y P1-y alloy lattice matching to a Ga As substrate are calculated for various As concentrations. The calculations are based on the pseudo-potential method within the virtual crystal approximation containing the effective disorder potential. The variations of the studied properties with pressure and temperature are investigated. A comparison between the calculated results and the available published data for binary parent compounds shows that they have good agreement,while the calculated results for the quaternary alloys at various temperature and pressure may be taken as a reference.
基金the National Natural Science Foundation of China(No.51704183)the Postdoctoral Science Foundation of China(No.2018M640646).
文摘The rock bridges sandwiched in incipiently jointed rock mass were considered as barriers that block the fluid seepage,and provide certain shear strength reservation.For better revealing the influence of hydraulic pressure on the failure behaviour of rock bridges,direct shear tests were carried out through a newly proposed method on rock samples that contain two parallel incipient joints.By developing the gypsum-silicone pad coupling samples,a conventional triaxial test system was qualified to implement direct shear tests with satisfied sealing capability.The results showed that the rock bridges could be failed through the tensile failure,shear failure and mixed failure mechanism.The hydraulic pressure would facilitate the tensile failure mechanism and induce rougher fracture surfaces;while the normal stress would facilitate the shear failure mechanism and induce less rough fracture.The hydraulic pressure reduced the global shear strength of the rock block through reducing the efficient normal stress applied on the rock bridge area,which was highly dependent on the joint persistence,k.Moreover,because of the iterating occurrence of the hydraulic pressure lag with the fracture propagation,the rock bridge failure stage in the shear stress-shear displacement curves displayed a fluctuation trend.
基金the National Key Research and Development Program of China(Grant No.2017YFGX090043).
文摘Molecular dynamics simulations were used to investigate the influence of pressure on the structural properties and dynamics of magnesium(Mg)during rapid solidification.The dynamics analysis revealed that,with an increase in pressure,the dynamics of Mg melt slowed down sharply and the dynamical heterogeneities increased,leading to a denser structure.Atom-level structural analysis using the cluster-type index method suggested that the predominant structure transformed from hexagonal closed-packed to face-centered cubic with increasing pressure from 0 GPa to 5 GPa,and then transformed to the A15 complex crystal structure as the pressure increased above 10 GPa.In addition,the nature of polymorph selection was investigated by analyzing the phonon dispersion of Mg under different pressures.These findings provide a novel insight into polymorphic transitions of Mg under pressure and guide the selection of Mg polymorphs for practical applications.
基金supported by the Fundamental Research Funds for the Central Universities of China
文摘Electrical wire explosion is a promising method for the preparation of metal nanopowder, but the properties of metal nanopowder are affected by the second discharge process of electrical wire explosion. The second discharge characteristics of aluminum wire electrical ex- plosion under variant argon pressures were studied in a RLC discharge circuit. The results show that the curve of the second discharge voltages versus the pressure presents a U-shape. To clarify the roles of aluminum vapor and argon in the process of the second discharge, a spectrograph and a high speed framing camera were used to study the radiation spectrum and spatial distribution of the electrical explosion plasma. It is observed that argon participates in the second discharge process under low pressure. A discharge channel develops along the surface of the aluminum vapor. Under higher pressure, a second discharge takes place in the aluminum vapor and the discharge channel is inside the aluminum vapor.
基金supported by the National Natural Science Foundation of China(Grant Nos.52002372,51672279,51727806,11874361,and 11774354)Science Challenge Project(Grant No.TZ2016001)Chinese Academy of Sciences Innovation Grant(Grant No.CXJJ-19-B08)。
文摘The recent discovery of room temperature superconductivity(283 K)in carbonaceous sulfur hydride(C-S-H)has attracted much interest in ternary hydrogen rich materials.In this report,ternary hydride P-S-H was synthesized through a photothermal-chemical reaction from elemental sulfur(S),phosphorus(P)and molecular hydrogen(H_(2))at high pressures and room temperature.Raman spectroscopy under pressure shows that H_(2)S and PH_(3) compounds are synthesized after laser heating at 0.9 GPa,and a ternary van der Waals compound P-S-H is synthesized with further compression to 4.6 GPa.The P-S-H compound is probably a mixed alloy of PH_(3) and(H_(2)S)_(2)H_(2) with a guest-host structure similar to the C-S-H system.The ternary hydride can persist up to 35.6 GPa at least and shows two phase transitions at approximately 23.6 GPa and 32.8 GPa,respectively.
基金supported by National Nature Science Foundation of China under Grant Nos.61178022 and 61575030Research funds for the Doctoral program of Higher Education of China(No.20112216120006,20122216120009)supported by the Science and Technology Department of Changchou City(No.14KP007)
文摘In this work,we investigated the influence of air gas pressures on the expansion features of nanosecond laser ablated aluminum plasma in the absence and presence of a nonuniform magnetic field using fast photography.A particular emphasis was given to the plume dynamics(shape,size) with the combined effects of ambient gas pressures and an external magnetic field.Free expansion,sharpening effect,and hemi-spherical structures of the aluminum plasma were observed without a magnetic field under different gas pressures.Analysis of the resulting plume images with the combined effects of air gas pressures and a magnetic field show significant changes,such as plume splitting,elliptical geometry changes,radial expansion,and plume confinement.Furthermore,the total size of the plasma plume with a magnetic field was measured to be smaller than the plasma plume without a magnetic field at several background pressures.
基金the National Natural Science Foundation of China(Grant Nos.11704143,11804113,11604023,and 12122405)。
文摘Solid H_(2)S as the precursor for H_(3)S with incredible superconducting properties under high pressure,has recently attracted extensive attention.Here in this work,we propose two new phases of H_(2)S with P42/n and I41/a lattice symmetries in a pressure range of 0 GPa–30 GPa through first-principles structural searches,which complement the phase transition sequence.Further an ab initio molecular dynamics simulation confirms that the molecular phase P2/c of H_(2)S is gradually dissociated with the pressure increasing and reconstructs into a new P2_(1)/m structure at 160 GPa,exhibiting the superconductivity with Tc of 82.5 K.Our results may provide a guidance for the theoretical study of low-temperature superconducting phase of H_(2)S.
基金supported by the National Natural Science Foundation of China(Grant No.NSAF.U1330115)the National Major Scientific Instrument and Equipment Development Project of China(Grant No.2012YQ130234)
文摘This study presents high pressure phase transitions and equation of states of cerium under pressures up to 51 GPa at room temperature. The angle-dispersive x-ray diffraction experiments are carried out using a high energy synchrotron x-ray source. The bulk moduli of high pressure phases of cerium are calculated using the Birch-Mumaghan equation. We discuss and correct several previous controversial conclusions, which are caused by the measurement accuracy or personal explanation. The c/a axial ratio of e-Ce has a maximum value at about 29 GPa, i.e., c/a ≈ 1.690.
文摘An experiment is carried out to investigate the pressures acting on the hull of a container ship in regular waves,The experimental results are important to develop the theoretical calculation method for the dynamic pressures.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51976233 and 91641118).
文摘The effects of temperature and pressure on laser-induced fluorescence(LIF)of OH are numerically studied under the excitation of A-X(1,0)transition at high pressures.A detailed theoretical analysis is carried out to reveal the physical processes of LIF.It is shown that high pressure LIF measurements get greatly complicated by the variations of pressure-and temperature-dependent parameters,such as Boltzmann fraction,absorption lineshape broadening,central-frequency shifting,and collisional quenching.Operations at high pressures require a careful choice of an excitation line,and the Q1(8)line in the A-X(1,0)band of OH is selected due to its minimum temperature dependence through the calculation of Boltzmann fraction.The absorption spectra of OH become much broader as pressure increases,leading to a smaller overlap integral and thus smaller excitation efficiency.The central-frequency shifting cannot be omitted at high pressures,and should be taken into account when setting the excitation frequency.The fluorescence yield is estimated based on the LASKIN calculation.Finally,OH-LIF measurements were conducted on flat stoichiometric CH4/air flames at high pressures.And both the numerical and experimental results illustrate that the pressure dependence of fluorescence yield is dominated,and the fluorescence yield is approximately inversely proportional to pressure.These results illustrate the physical processes of OH-LIF and provide useful guidelines for high-pressure application of OH-LIF.