For samples in the gaseous state at room temperature and ambient pressure,mature technology has been developed to encapsulate them in a diamond anvil cell(DAC).However,the large volume press(LVP)can only treat samples...For samples in the gaseous state at room temperature and ambient pressure,mature technology has been developed to encapsulate them in a diamond anvil cell(DAC).However,the large volume press(LVP)can only treat samples with starting materials in solid or liquid form.We have achieved stable encapsulation and reaction treatment of carbon dioxide in a centimeter sized sample chamber for a long time(over 10 min)under conditions of temperature higher than 1200℃ and pressure over 5 GPa through the use of integrated low-temperature freezing and rapid compression sealing method for LVP cell assemblies.This technology can also be applied to the packaging of other gaseous or liquid samples,such as ammonia,sulfur dioxide,water,etc.in LVP devices.展开更多
This study explores the utilization of various chemometric analytical methods for determining the quality of pressed sesame oil with different adulteration levels of refined sesame oil using UV spectral fingerprints.T...This study explores the utilization of various chemometric analytical methods for determining the quality of pressed sesame oil with different adulteration levels of refined sesame oil using UV spectral fingerprints.The goal of this study was to provide a reliable tool for assessing the quality of sesame oil.The UV spectra of 51 samples of pressed sesame oil and 420 adulterated samples with refined sesame oil were measured in the range of 200-330 nm.Various classification and prediction methods,including linear discrimination analysis(LDA),support vector machines(SVM),soft independent modeling of class analogy(SIMCA),partial least squares regression(PLSR),support vector machine regression(SVR),and back-propagation neural network(BPNN),were employed to analyze the UV spectral data of pressed sesame oil and adulterated sesame oil.The results indicated that SVM outperformed the other classification methods in qualitatively identifying adulterated sesame oil,achieving an accuracy of 96.15%,a sensitivity of 97.87%,and a specificity of 80%.For quantitative analysis,BPNN yielded the best prediction results,with an R^(2) value of 0.99,RMSEP of 2.34%,and RPD value of 10.60(LOD of 8.60%and LOQ of 28.67%).Overall,the developed models exhibited significant potential for rapidly identifying and predicting the quality of sesame oil.展开更多
Deformation can change the transition pathway of materials under high pressure,thus significantly affects physical and chemical properties of matters.However,accurate pressure calibration under deformation is challeng...Deformation can change the transition pathway of materials under high pressure,thus significantly affects physical and chemical properties of matters.However,accurate pressure calibration under deformation is challenging and thereby causes relatively large pressure uncertainties in deformation experiments,resulting in the synthesis of complex multiphase materials.Here,pressure generations of three types of deformation assemblies were well calibrated in a Walker-type largevolume press(LVP)by electrical resistance measurements combined with finite element simulations(FESs).Hard Al_(2)O_(3) or diamond pistons in shear and uniaxial deformation assemblies significantly increase the efficiency of pressure generation compared with the conventional quasi-hydrostatic assembly.The uniaxial deformation assembly using flat diamond pistons possesses the highest efficiency in these deformation assemblies.This finding is further confirmed by stress distribution analysis based on FESs.With this deformation assembly,we found shear can effectively promote the transformation of C60 into diamond under high pressure and realized the synthesis of phase-pure diamond at relatively moderate pressure and temperature conditions.The present developed techniques will help improve pressure efficiencies in LVP and explore the new physical and chemical properties of materials under deformation in both science and technology.展开更多
Metal matrix composites tiles based on Ti-6Al-4V(Ti64)alloy,reinforced with 10,20,and 40(vol%)of either TiC or TiB particles were made using press-and-sinter blended elemental powder metallurgy(BEPM)and then bonded to...Metal matrix composites tiles based on Ti-6Al-4V(Ti64)alloy,reinforced with 10,20,and 40(vol%)of either TiC or TiB particles were made using press-and-sinter blended elemental powder metallurgy(BEPM)and then bonded together into 3-layer laminated plates using hot isostatic pressing(HIP).The laminates were ballistically tested and demonstrated superior performance.The microstructure and properties of the laminates were analyzed to determine the effect of the BEPM and HIP processing on the ballistic properties of the layered plates.The effect of porosity in sintered composites on further diffusion bonding of the plates during HIP is analyzed to understand the bonding features at the interfaces between different adjacent layers in the laminate.Exceptional ballistic performance of fabricated structures was explained by a significant reduction in the residual porosity of the BEPM products by their additional processing using HIP,which provides an unprecedented increase in the hardness of the layered composites.It is argued that the combination of the used two technologies,BEPM and HIP is principally complimentary for the materials in question with the abilities to solve the essential problems of each used individually.展开更多
(Gd,Lu)_(2)O_(3)∶Eu scintillation ceramics have promising applications in the high-energy X-ray imaging.Eu0.1Gd0.6Lu1.3O3 nano-powders with pure phase were prepared from the precursor calcined at 1050℃for 4 h by the...(Gd,Lu)_(2)O_(3)∶Eu scintillation ceramics have promising applications in the high-energy X-ray imaging.Eu0.1Gd0.6Lu1.3O3 nano-powders with pure phase were prepared from the precursor calcined at 1050℃for 4 h by the co-precipitation method.Using the synthesized nano-powders as initial material,Eu_(0.1)Gd_(0.6)Lu_(1.3)O_(3)ceramics were fabri-cated by vacuum pre-sintering at different temperatures for 2 h and hot isostatic pressing(HIP)at 1750℃for 3 h in ar-gon.The influence of pre-sintering temperature on the microstructure,optical and luminescence properties was investi-gated.The Eu_(0.1)Gd_(0.6)Lu_(1.3)O_(3)ceramics pre-sintered at 1625℃for 2 h combined with HIP post-treatment show the high-est in-line transmittance of 75.2%at 611 nm.The photoluminescence(PL)and X-ray excited luminescence(XEL)spectra of the Eu_(0.1)Gd_(0.6)Lu_(1.3)O_(3)transparent ceramics demonstrate a strong red emission peak at 611 nm due to the^(5)D_(0)→^(7)F_(2) transition of Eu^(3+).The PL,PLE and XEL intensities of the HIP post-treated Eu_(0.1)Gd_(0.6)Lu_(1.3)O_(3)ceramics show a trend of first ascending and then descending with the increase of pre-sintering temperature.The thermally stimulated lumines-cence(TSL)curve of the HIP post-treated Eu_(0.1)Gd_(0.6)Lu_(1.3)O_(3)ceramics presents one high peak at 178 K and two peaks with lower intensities at 253 K and 320 K.The peak at 320 K may be related to oxygen vacancies,and the lumines-cence peak at 178 K is related to defects caused by the valence state changes of Eu^(3+)ions.展开更多
基金supported by the National Key R&D Program of China(Grant No.2023YFA1406200).
文摘For samples in the gaseous state at room temperature and ambient pressure,mature technology has been developed to encapsulate them in a diamond anvil cell(DAC).However,the large volume press(LVP)can only treat samples with starting materials in solid or liquid form.We have achieved stable encapsulation and reaction treatment of carbon dioxide in a centimeter sized sample chamber for a long time(over 10 min)under conditions of temperature higher than 1200℃ and pressure over 5 GPa through the use of integrated low-temperature freezing and rapid compression sealing method for LVP cell assemblies.This technology can also be applied to the packaging of other gaseous or liquid samples,such as ammonia,sulfur dioxide,water,etc.in LVP devices.
基金supported by the project number of“China Agricultural Research System funded by the Ministry of Agriculture”CARS-14,the Key Project of Science and Technology of Henan Province (201300110600)the“Double First-Class”Project for Postgraduate Academic Innovation Enhancement Programme of Henan University of Technology (HAUTSYL2023TS16)Education and Teaching Reform Research and Practice Project in School of International Education,Henan University of Technology (GJXY202407).
文摘This study explores the utilization of various chemometric analytical methods for determining the quality of pressed sesame oil with different adulteration levels of refined sesame oil using UV spectral fingerprints.The goal of this study was to provide a reliable tool for assessing the quality of sesame oil.The UV spectra of 51 samples of pressed sesame oil and 420 adulterated samples with refined sesame oil were measured in the range of 200-330 nm.Various classification and prediction methods,including linear discrimination analysis(LDA),support vector machines(SVM),soft independent modeling of class analogy(SIMCA),partial least squares regression(PLSR),support vector machine regression(SVR),and back-propagation neural network(BPNN),were employed to analyze the UV spectral data of pressed sesame oil and adulterated sesame oil.The results indicated that SVM outperformed the other classification methods in qualitatively identifying adulterated sesame oil,achieving an accuracy of 96.15%,a sensitivity of 97.87%,and a specificity of 80%.For quantitative analysis,BPNN yielded the best prediction results,with an R^(2) value of 0.99,RMSEP of 2.34%,and RPD value of 10.60(LOD of 8.60%and LOQ of 28.67%).Overall,the developed models exhibited significant potential for rapidly identifying and predicting the quality of sesame oil.
基金the National Natural Science Foundation of China(Grant Nos.42272041,41902034,52302043,12304015,52302043,and 12011530063)the National Major Science Facility Synergetic Extreme Condition User Facility Achievement Transformation Platform Construction(Grant No.2021FGWCXNLJSKJ01)+2 种基金the China Postdoctoral Science Foundation(Grant Nos.2022M720054 and 2023T160257)the National Key Research and Development Program of China(Grant No.2022YFB3706602)the Jilin Univer-sity High-level Innovation Team Foundation,China(Grant No.2021TD-05).
文摘Deformation can change the transition pathway of materials under high pressure,thus significantly affects physical and chemical properties of matters.However,accurate pressure calibration under deformation is challenging and thereby causes relatively large pressure uncertainties in deformation experiments,resulting in the synthesis of complex multiphase materials.Here,pressure generations of three types of deformation assemblies were well calibrated in a Walker-type largevolume press(LVP)by electrical resistance measurements combined with finite element simulations(FESs).Hard Al_(2)O_(3) or diamond pistons in shear and uniaxial deformation assemblies significantly increase the efficiency of pressure generation compared with the conventional quasi-hydrostatic assembly.The uniaxial deformation assembly using flat diamond pistons possesses the highest efficiency in these deformation assemblies.This finding is further confirmed by stress distribution analysis based on FESs.With this deformation assembly,we found shear can effectively promote the transformation of C60 into diamond under high pressure and realized the synthesis of phase-pure diamond at relatively moderate pressure and temperature conditions.The present developed techniques will help improve pressure efficiencies in LVP and explore the new physical and chemical properties of materials under deformation in both science and technology.
基金funding from the NATO Agency Science for Peace and Security (#G5787)Ballistic investigations were co-financed by Military University of Technology in Warsaw under research project UGB 829/2023/WATSeparate works made in G.V.Kurdyumov Institute for Metal Physics of N.A.S.of Ukraine were partially financially supported by N.A.S.of Ukraine within the frames of project#III09-18。
文摘Metal matrix composites tiles based on Ti-6Al-4V(Ti64)alloy,reinforced with 10,20,and 40(vol%)of either TiC or TiB particles were made using press-and-sinter blended elemental powder metallurgy(BEPM)and then bonded together into 3-layer laminated plates using hot isostatic pressing(HIP).The laminates were ballistically tested and demonstrated superior performance.The microstructure and properties of the laminates were analyzed to determine the effect of the BEPM and HIP processing on the ballistic properties of the layered plates.The effect of porosity in sintered composites on further diffusion bonding of the plates during HIP is analyzed to understand the bonding features at the interfaces between different adjacent layers in the laminate.Exceptional ballistic performance of fabricated structures was explained by a significant reduction in the residual porosity of the BEPM products by their additional processing using HIP,which provides an unprecedented increase in the hardness of the layered composites.It is argued that the combination of the used two technologies,BEPM and HIP is principally complimentary for the materials in question with the abilities to solve the essential problems of each used individually.
文摘(Gd,Lu)_(2)O_(3)∶Eu scintillation ceramics have promising applications in the high-energy X-ray imaging.Eu0.1Gd0.6Lu1.3O3 nano-powders with pure phase were prepared from the precursor calcined at 1050℃for 4 h by the co-precipitation method.Using the synthesized nano-powders as initial material,Eu_(0.1)Gd_(0.6)Lu_(1.3)O_(3)ceramics were fabri-cated by vacuum pre-sintering at different temperatures for 2 h and hot isostatic pressing(HIP)at 1750℃for 3 h in ar-gon.The influence of pre-sintering temperature on the microstructure,optical and luminescence properties was investi-gated.The Eu_(0.1)Gd_(0.6)Lu_(1.3)O_(3)ceramics pre-sintered at 1625℃for 2 h combined with HIP post-treatment show the high-est in-line transmittance of 75.2%at 611 nm.The photoluminescence(PL)and X-ray excited luminescence(XEL)spectra of the Eu_(0.1)Gd_(0.6)Lu_(1.3)O_(3)transparent ceramics demonstrate a strong red emission peak at 611 nm due to the^(5)D_(0)→^(7)F_(2) transition of Eu^(3+).The PL,PLE and XEL intensities of the HIP post-treated Eu_(0.1)Gd_(0.6)Lu_(1.3)O_(3)ceramics show a trend of first ascending and then descending with the increase of pre-sintering temperature.The thermally stimulated lumines-cence(TSL)curve of the HIP post-treated Eu_(0.1)Gd_(0.6)Lu_(1.3)O_(3)ceramics presents one high peak at 178 K and two peaks with lower intensities at 253 K and 320 K.The peak at 320 K may be related to oxygen vacancies,and the lumines-cence peak at 178 K is related to defects caused by the valence state changes of Eu^(3+)ions.