传统Top-k空间关键字查询忽略了兴趣对象周围的基础设施属性对于用户偏好的影响,针对该问题,研究了基于影响区域约束关系的Top-k空间关键字偏好查询问题,设计了一种基于贪心策略的最近邻算法GS-NNA(Greedy Strategy based Nearest Neigh...传统Top-k空间关键字查询忽略了兴趣对象周围的基础设施属性对于用户偏好的影响,针对该问题,研究了基于影响区域约束关系的Top-k空间关键字偏好查询问题,设计了一种基于贪心策略的最近邻算法GS-NNA(Greedy Strategy based Nearest Neighbor Algorithm)。该算法采用R^*-tree和倒排文件两种索引结构,结合贪心思想和最近邻算法,每次选择分值最高的兴趣对象作为候选结果集,并利用阈值判定条件对R^*-tree进行剪枝。实验结果表明,GS-NNA算法与现有相关算法相比,有效提高了查询效率。展开更多
针对Web数据库近似查询产生的多查询结果问题,提出了一种近似查询结果自动排序方法,该方法利用KL距离(Kullback-Leibler distance),PIR(probabilistic information retrieval)模型和查询历史(query history)来构建元组排序打分函数;打...针对Web数据库近似查询产生的多查询结果问题,提出了一种近似查询结果自动排序方法,该方法利用KL距离(Kullback-Leibler distance),PIR(probabilistic information retrieval)模型和查询历史(query history)来构建元组排序打分函数;打分函数根据结果元组中被查询指定的属性值对初始查询的满足度和未被查询指定的属性值与用户偏好的相关度来评估元组的排序分值.实验证明,提出的排序方法能够较好地满足用户需求和偏好,并具有较高执行效率.展开更多
随着人们对个体隐私的日益关注,位置服务中的隐私保护问题成为数据库领域新兴的研究热点.针对面向路网的隐私保护k近邻查询中,保护位置隐私引发的难以兼顾查询质量问题及查询者对查询效率与准确性间偏好调控需求问题,引入PoI(Points of ...随着人们对个体隐私的日益关注,位置服务中的隐私保护问题成为数据库领域新兴的研究热点.针对面向路网的隐私保护k近邻查询中,保护位置隐私引发的难以兼顾查询质量问题及查询者对查询效率与准确性间偏好调控需求问题,引入PoI(Points of Interest)概率分布概念,通过分析服务器端PoI邻接关系,生成PoI概率分布.将服务器端查找k近邻PoI过程分解为路网扩张查询阶段和迭代替换阶段,为迭代替换阶段构建基于PoI概率分布的可替换PoI概率预测机制.基于所构建概率预测机制,提出支持用户偏好调控的保护位置隐私k近邻查询方法AdPriQuery(Adjustable Privacy-preserving knearest neighbor Query),查询者通过调节筛选概率阈值,在兼顾位置隐私安全的同时,实现对查询效率与准确性的偏好调控.所提调控机制对已有的基于空间混淆的路网环境保护位置隐私近邻查询方法具有良好的兼容性.理论分析和实验结果表明,所提方法在兼顾保护位置隐私的同时,能有效提高服务器端查询效率,同时支持查询结果准确性与查询效率的偏好调控要求.展开更多
空间偏好查询是当前空间查询研究中的一类热点问题,而现有的空间偏好查询不能有效支持面向组用户的位置服务应用.为此,提出一类新型空间偏好查询——面向组近邻的Top-k空间偏好查询(Topk spatial preference query for group nearest ne...空间偏好查询是当前空间查询研究中的一类热点问题,而现有的空间偏好查询不能有效支持面向组用户的位置服务应用.为此,提出一类新型空间偏好查询——面向组近邻的Top-k空间偏好查询(Topk spatial preference query for group nearest neighbor).该查询通过查找特征对象的λ子集组近邻最终为用户返回评分值最高的前k个λ子集.为了高效执行这一查询,给出了两种查询算法:TSPQ-G及TSPQ-G*.其中TSPQ-G*在TSPQ-G的基础上,通过空间剪枝及高效的特征对象索引树遍历策略大幅减少I/O代价,进而有效提高了该查询的执行效率.实验采用多个数据集验证了所提算法在不同参数设置下的有效性.展开更多
文摘针对Web数据库近似查询产生的多查询结果问题,提出了一种近似查询结果自动排序方法,该方法利用KL距离(Kullback-Leibler distance),PIR(probabilistic information retrieval)模型和查询历史(query history)来构建元组排序打分函数;打分函数根据结果元组中被查询指定的属性值对初始查询的满足度和未被查询指定的属性值与用户偏好的相关度来评估元组的排序分值.实验证明,提出的排序方法能够较好地满足用户需求和偏好,并具有较高执行效率.
文摘空间偏好查询是当前空间查询研究中的一类热点问题,而现有的空间偏好查询不能有效支持面向组用户的位置服务应用.为此,提出一类新型空间偏好查询——面向组近邻的Top-k空间偏好查询(Topk spatial preference query for group nearest neighbor).该查询通过查找特征对象的λ子集组近邻最终为用户返回评分值最高的前k个λ子集.为了高效执行这一查询,给出了两种查询算法:TSPQ-G及TSPQ-G*.其中TSPQ-G*在TSPQ-G的基础上,通过空间剪枝及高效的特征对象索引树遍历策略大幅减少I/O代价,进而有效提高了该查询的执行效率.实验采用多个数据集验证了所提算法在不同参数设置下的有效性.