On the basis of Artificial Neural Network theory, a back propagation neural network with one middle layer is building in this paper, and its algorithms is also given, Using this BP network model, study the case of Mal...On the basis of Artificial Neural Network theory, a back propagation neural network with one middle layer is building in this paper, and its algorithms is also given, Using this BP network model, study the case of Malian-River basin. The results by calculating show that the solution based on BP algorithms are consis- tent with those based multiple - variables linear regression model. They also indicate that BP model in this paper is reasonable and BP algorithms are feasible.展开更多
A laboratory leaching experiment with samples of different grades was carried out, and an analytical method of concentration of leaching solution was put forward. For each sample, respectively, by applying phase space...A laboratory leaching experiment with samples of different grades was carried out, and an analytical method of concentration of leaching solution was put forward. For each sample, respectively, by applying phase space reconstruction for time series of monitoring data, the saturated embedding dimension and the correlation dimension were obtained, and the evolution laws between neighboring points in the reconstructed phase space were revealed. With BP neural network, a prediction model of concentration of leaching solution was set up and the maximum error of which was less than 2%. The results show that there exist chaotic characteristics in leaching system, and samples of different grades have different nonlinear dynamic features; the higher the grade of sample, the smaller the correlation dimension; furthermore, the maximum Lyapunov index, energy dissipation and chaotic extent of the leaching system increase with grade of the sample; by phase space reconstruction, the subtle change features of concentration of leaching solution can be magnified and the inherent laws can be fully demonstrated. According to the laws, a prediction model of leaching cycle period has been established to provide a theoretical foundation for solution mining.展开更多
To make full use of the gas resource, stabilize the pipe network pressure, and obtain higher economic benefits in the iron and steel industry, the surplus gas prediction and scheduling models were proposed. Before app...To make full use of the gas resource, stabilize the pipe network pressure, and obtain higher economic benefits in the iron and steel industry, the surplus gas prediction and scheduling models were proposed. Before applying the forecasting techniques, a support vector classifier was first used to classify the data, and then the filtering was used to create separate trend and volatility sequences. After forecasting, the Markov chain transition probability matrix was introduced to adjust the residual. Simulation results using surplus gas data from an iron and steel enterprise demonstrate that the constructed SVC-HP-ENN-LSSVM-MC prediction model prediction is accurate, and that the classification accuracy is high under different conditions. Based on this, the scheduling model was constructed for surplus gas operating, and it has been used to investigate the comprehensive measures for managing the operational probabilistic risk and optimize the economic benefit at various working conditions and implementations. It has extended the concepts of traditional surplus gas dispatching systems, and provides a method for enterprises to determine optimal schedules.展开更多
基金Supported by Brilliant Youth Fund in Hebei Province
文摘On the basis of Artificial Neural Network theory, a back propagation neural network with one middle layer is building in this paper, and its algorithms is also given, Using this BP network model, study the case of Malian-River basin. The results by calculating show that the solution based on BP algorithms are consis- tent with those based multiple - variables linear regression model. They also indicate that BP model in this paper is reasonable and BP algorithms are feasible.
基金Project(51374035)supported by the National Natural Science Foundation of ChinaProject(2012BAB08B02)supported by the National“Twelfth Five”Science and Technology,ChinaProject(NCET-13-0669)supported by New Century Excellent Talents in University of Ministry of Education of China
文摘A laboratory leaching experiment with samples of different grades was carried out, and an analytical method of concentration of leaching solution was put forward. For each sample, respectively, by applying phase space reconstruction for time series of monitoring data, the saturated embedding dimension and the correlation dimension were obtained, and the evolution laws between neighboring points in the reconstructed phase space were revealed. With BP neural network, a prediction model of concentration of leaching solution was set up and the maximum error of which was less than 2%. The results show that there exist chaotic characteristics in leaching system, and samples of different grades have different nonlinear dynamic features; the higher the grade of sample, the smaller the correlation dimension; furthermore, the maximum Lyapunov index, energy dissipation and chaotic extent of the leaching system increase with grade of the sample; by phase space reconstruction, the subtle change features of concentration of leaching solution can be magnified and the inherent laws can be fully demonstrated. According to the laws, a prediction model of leaching cycle period has been established to provide a theoretical foundation for solution mining.
基金Project(51204082)supported by the National Natural Science Foundation of ChinaProject(KKSY201458118)supported by the Talent Cultivation Project of Kuning University of Science and Technology,China
文摘To make full use of the gas resource, stabilize the pipe network pressure, and obtain higher economic benefits in the iron and steel industry, the surplus gas prediction and scheduling models were proposed. Before applying the forecasting techniques, a support vector classifier was first used to classify the data, and then the filtering was used to create separate trend and volatility sequences. After forecasting, the Markov chain transition probability matrix was introduced to adjust the residual. Simulation results using surplus gas data from an iron and steel enterprise demonstrate that the constructed SVC-HP-ENN-LSSVM-MC prediction model prediction is accurate, and that the classification accuracy is high under different conditions. Based on this, the scheduling model was constructed for surplus gas operating, and it has been used to investigate the comprehensive measures for managing the operational probabilistic risk and optimize the economic benefit at various working conditions and implementations. It has extended the concepts of traditional surplus gas dispatching systems, and provides a method for enterprises to determine optimal schedules.