煤炭灰分值是衡量煤炭质量的关键指标之一,灰分含量和性质对燃烧设备、环境、后续的加工利用都有着极大影响。针对目前煤炭灰分检测方法的滞后性、劳动密集型问题,提出了一种基于XRF光谱的预处理(Preprocessing,PRE)与偏最小二乘法(Part...煤炭灰分值是衡量煤炭质量的关键指标之一,灰分含量和性质对燃烧设备、环境、后续的加工利用都有着极大影响。针对目前煤炭灰分检测方法的滞后性、劳动密集型问题,提出了一种基于XRF光谱的预处理(Preprocessing,PRE)与偏最小二乘法(Partial Least Squares,PLS)相结合的XRF煤炭灰分智能预测算法。通过将XRF技术获取煤炭样品的光谱数据输入PLS主模型初步预测灰分,再将相关校正参数输入补偿优化模型中,最终将两者相加得到预测灰分值。试验结果表明:相对于偏最小二乘法回归、神经网络回归模型,PRE-PLS模型决定系数为0.9951,均方根误差为0.9411,平均绝对误差为0.7332%,表明该模型具备较高的精度,能够胜任现场检测工作,为生产提供可靠指导。展开更多
文摘煤炭灰分值是衡量煤炭质量的关键指标之一,灰分含量和性质对燃烧设备、环境、后续的加工利用都有着极大影响。针对目前煤炭灰分检测方法的滞后性、劳动密集型问题,提出了一种基于XRF光谱的预处理(Preprocessing,PRE)与偏最小二乘法(Partial Least Squares,PLS)相结合的XRF煤炭灰分智能预测算法。通过将XRF技术获取煤炭样品的光谱数据输入PLS主模型初步预测灰分,再将相关校正参数输入补偿优化模型中,最终将两者相加得到预测灰分值。试验结果表明:相对于偏最小二乘法回归、神经网络回归模型,PRE-PLS模型决定系数为0.9951,均方根误差为0.9411,平均绝对误差为0.7332%,表明该模型具备较高的精度,能够胜任现场检测工作,为生产提供可靠指导。