Magnetite is a kind of iron ore that is difficult to carburize.In order to improve the carburizing performance of magnetite pellet,pre-oxidation treatment was carried out,and the oxidation,reduction and carburization ...Magnetite is a kind of iron ore that is difficult to carburize.In order to improve the carburizing performance of magnetite pellet,pre-oxidation treatment was carried out,and the oxidation,reduction and carburization behaviors of magnetite pellet were investigated in this study.The magnetite pellet was oxidized in the air and carburized in CO-CO_(2)-H_(2) gas mixtures,the oxidation,reduction and carburization behaviors were demonstrated by detecting phase change,microstructure,carburizing index via thermogravimetry,X-ray diffraction(XRD),infrared carbon-sulfur analyzer,and scanning electron microscope(SEM).The results show that the dense magnetite particles inside pellet are oxidized to porous hematite particles,and the Fe_(3)O_(4) transforms to Fe_(2)O_(3) with high lattice defect concentration during the pre-oxidation process.Then the porous hematite particles and newly formed Fe_(2)O_(3) significantly promote the reduction efficiency.Porous metallic iron particles are produced in the reduction process.Finally,both high reduction efficiency and the porous structure of metallic iron particles dramatically enhance the carburization efficiency of pellet.High preoxidation temperature favors to the carburization of magnetite pellet.However,the carburized index decreases due to the recrystallization of iron oxide when the temperature extends to 1000℃.The optimum pre-oxidation temperature for magnetite pellet carburization is 900℃.展开更多
The bacterial pre-oxidation process of arsenic-containing gold concentrates and the bacterial activity under different chloride ion concentrations were studied by using a mixture of thermophilic strains TCJ domesticat...The bacterial pre-oxidation process of arsenic-containing gold concentrates and the bacterial activity under different chloride ion concentrations were studied by using a mixture of thermophilic strains TCJ domesticated in production.The experimental result shows that with different samples and leaching systems,the adaptability and Cl- tolerance of bacteria are different,and that appropriate chloride ion concentration is conductive to bacterial oxidation,while higher chloride ion concentration will inhibit the bacterial activity and affect the pre-oxidation performance.Under the present production conditions,TCJ can adapt to the changes of water quality in the source of water and its critical chloride ion tolerance value is 2.7 g/L.展开更多
Three representative sulfide ore samples were collected from typical metal mines,and their corresponding pre-oxidized products were obtained under nature environment.The thermal behaviors of each sample at heating rat...Three representative sulfide ore samples were collected from typical metal mines,and their corresponding pre-oxidized products were obtained under nature environment.The thermal behaviors of each sample at heating rates of 5,10,15 and 20 °C/min in air flow from ambient temperature to 800 °C were studied by simultaneous thermal analysis and the TG/DSC curves before and after the pre-oxidation were compared.By the peak temperature of DTG curves,the whole reaction process for each sample was divided into different stages,and the apparent activation energies were calculated by the Ozawa-Flynn-Wall method.The results show that the reaction process of each sample after pre-oxidation is more complex,with quicker reaction rates,fewer heat production quantities,and higher or lower ignition-points.The apparent activation energies decrease from 364.017-474.228 kJ/mol to 244.523- 333.161 kJ/mol.Therefore,sulfide ores are more susceptible to spontaneous combustion after the pre-oxidation.展开更多
Presently,ilmenite concentrates from Odisha Sands Complex at Chhatrapur,India are utilized to produce TiO2 slag by direct smelting in an electric arc furnace.However,the process involves the consumption of excess elec...Presently,ilmenite concentrates from Odisha Sands Complex at Chhatrapur,India are utilized to produce TiO2 slag by direct smelting in an electric arc furnace.However,the process involves the consumption of excess electrical energy and difficulty in handling the arc furnace due to frothing effects.A more efficient process of pre-reducing the ilmenite before smelting has been proposed in the present communication.In particular,studies have been undertaken on the reduction process of ilmenite-coke composite pellets.The difference in the reduction behaviour of raw ilmenite and ilmenite-coke composite pellets has been established and compared with that of the pre-oxidized raw pellets.The effects of various processing parameters like temperature,residence time,and reductant percentage on the metallization of composite pellets in a static bed have been investigated.Metallization of about 90%has been achieved at 1250°C for a reduction period of 360 min with a 4%coke composition.Furthermore,the reduced pellets have been characterized through chemical analysis,optical microscopy,field emission scanning electron microscopy and X-ray diffraction analysis.The reduction behaviour of composite pellets has also been found better than that of pre-oxidized pellets indicating the former to be more efficient.展开更多
基金Project(U1960104)supported by the National Natural Science Foundation of ChinaProject(LYU Ya-nan)supported by the Jiangsu Colleges and Universities Qing Lan Project,China。
文摘Magnetite is a kind of iron ore that is difficult to carburize.In order to improve the carburizing performance of magnetite pellet,pre-oxidation treatment was carried out,and the oxidation,reduction and carburization behaviors of magnetite pellet were investigated in this study.The magnetite pellet was oxidized in the air and carburized in CO-CO_(2)-H_(2) gas mixtures,the oxidation,reduction and carburization behaviors were demonstrated by detecting phase change,microstructure,carburizing index via thermogravimetry,X-ray diffraction(XRD),infrared carbon-sulfur analyzer,and scanning electron microscope(SEM).The results show that the dense magnetite particles inside pellet are oxidized to porous hematite particles,and the Fe_(3)O_(4) transforms to Fe_(2)O_(3) with high lattice defect concentration during the pre-oxidation process.Then the porous hematite particles and newly formed Fe_(2)O_(3) significantly promote the reduction efficiency.Porous metallic iron particles are produced in the reduction process.Finally,both high reduction efficiency and the porous structure of metallic iron particles dramatically enhance the carburization efficiency of pellet.High preoxidation temperature favors to the carburization of magnetite pellet.However,the carburized index decreases due to the recrystallization of iron oxide when the temperature extends to 1000℃.The optimum pre-oxidation temperature for magnetite pellet carburization is 900℃.
基金Project(2007AA060902) supported by the National High Technology Research and Development Program of ChinaProject(2010CB630905) supported by the National Basic Research Program of China
文摘The bacterial pre-oxidation process of arsenic-containing gold concentrates and the bacterial activity under different chloride ion concentrations were studied by using a mixture of thermophilic strains TCJ domesticated in production.The experimental result shows that with different samples and leaching systems,the adaptability and Cl- tolerance of bacteria are different,and that appropriate chloride ion concentration is conductive to bacterial oxidation,while higher chloride ion concentration will inhibit the bacterial activity and affect the pre-oxidation performance.Under the present production conditions,TCJ can adapt to the changes of water quality in the source of water and its critical chloride ion tolerance value is 2.7 g/L.
基金Project(51304051)supported by the National Natural Science Foundation of ChinaProject(2012J05088)supported by the Natural Science Foundation of Fujian Province,China+1 种基金Project(022409)supported by School Talent Award of Fuzhou University,ChinaProject(2013-XQ-18)supported by Science&Technology Development Foundation of Fuzhou University,China
文摘Three representative sulfide ore samples were collected from typical metal mines,and their corresponding pre-oxidized products were obtained under nature environment.The thermal behaviors of each sample at heating rates of 5,10,15 and 20 °C/min in air flow from ambient temperature to 800 °C were studied by simultaneous thermal analysis and the TG/DSC curves before and after the pre-oxidation were compared.By the peak temperature of DTG curves,the whole reaction process for each sample was divided into different stages,and the apparent activation energies were calculated by the Ozawa-Flynn-Wall method.The results show that the reaction process of each sample after pre-oxidation is more complex,with quicker reaction rates,fewer heat production quantities,and higher or lower ignition-points.The apparent activation energies decrease from 364.017-474.228 kJ/mol to 244.523- 333.161 kJ/mol.Therefore,sulfide ores are more susceptible to spontaneous combustion after the pre-oxidation.
基金Project(MLP-52)supported by the Council of Scientific and Industrial Research(CSIR),India。
文摘Presently,ilmenite concentrates from Odisha Sands Complex at Chhatrapur,India are utilized to produce TiO2 slag by direct smelting in an electric arc furnace.However,the process involves the consumption of excess electrical energy and difficulty in handling the arc furnace due to frothing effects.A more efficient process of pre-reducing the ilmenite before smelting has been proposed in the present communication.In particular,studies have been undertaken on the reduction process of ilmenite-coke composite pellets.The difference in the reduction behaviour of raw ilmenite and ilmenite-coke composite pellets has been established and compared with that of the pre-oxidized raw pellets.The effects of various processing parameters like temperature,residence time,and reductant percentage on the metallization of composite pellets in a static bed have been investigated.Metallization of about 90%has been achieved at 1250°C for a reduction period of 360 min with a 4%coke composition.Furthermore,the reduced pellets have been characterized through chemical analysis,optical microscopy,field emission scanning electron microscopy and X-ray diffraction analysis.The reduction behaviour of composite pellets has also been found better than that of pre-oxidized pellets indicating the former to be more efficient.