The largest Precambrian gas field (Anyue gas field) in China has been discovered in the central Sichuan Basin. However, the deep ancient Ediacaran (Sinian) dolomite presents a substantial challenge due to their tightn...The largest Precambrian gas field (Anyue gas field) in China has been discovered in the central Sichuan Basin. However, the deep ancient Ediacaran (Sinian) dolomite presents a substantial challenge due to their tightness and heterogeneity, rather than assumed large-area stratified reservoirs controlled by mound-shoal microfacies. This complicates the characterization of “sweet spot” reservoirs crucial for efficient gas exploitation. By analyzing compiled geological, geophysical and production data, this study investigates the impact of strike-slip fault on the development and distribution of high-quality “sweet spot” (fractured-vuggy) reservoirs in the Ediacaran dolomite of the Anyue gas field. The dolomite matrix reservoir exhibits low porosity (less than 4%) and low permeability (less than 0.5×10^(-3) μm^(2)). Contrarily, fractures and their dissolution processes along strike-slip fault zone significantly enhance matrix permeability by more than one order of magnitude and matrix porosity by more than one time. Widespread “sweet spot” fracture-vuggy reservoirs are found along the strike-slip fault zone, formed at the end of the Ediacaran. These fractured reservoirs are controlled by the coupling mechanisms of sedimentary microfacies, fracturing and karstification. Karstification prevails at the platform margin, while both fracturing and karstification control high-quality reservoirs in the intraplatform, resulting in reservoir diversity in terms of scale, assemblage and type. The architecture of the strike-slip fault zone governed the differential distribution of fracture zones and the fault-controlled “sweet spot” reservoirs, leading to wide fractured-vuggy reservoirs across the strike-slip fault zone. In conclusion, the intracratonic weak strike-slip fault can play a crucial role in improving tight carbonate reservoir, and the strike-slip fault-related “sweet spot” reservoir emerges as a unique and promising target for the efficient development of deep hydrocarbon resources. Tailored development strategies need to be implemented for these reservoirs, considering the diverse and differential impacts exerted by strike-slip faults on the reservoirs.展开更多
Based on the latest seismic data, resistivity profile, outcrop evidence and logging data, the structural features of basement in Sichuan Basin and its control on the hydrocarbon accumulation in the Sinian-Cambrian str...Based on the latest seismic data, resistivity profile, outcrop evidence and logging data, the structural features of basement in Sichuan Basin and its control on the hydrocarbon accumulation in the Sinian-Cambrian strata was discussed. It was found that a NE striking pre-Sinian rift was developed across the whole basin. Controlled by a series of rift-parallel normal faults, horst-graben structures were developed inside the rift, large horst-graben structures and later activity of their boundary faults controlled the distribution of beach facies of the overlying strata. The horst-graben structures induced the formation of local highs of ancient landform and controlled the successive development of overlapped bioherm beach facies in long-term marine setting from the Sinian period to the Permian period, and as a result a widely distributed favorable sedimentary facies belt was developed. The pre-Sinian rift and later activities of related normal faults controlled the development of the grain beach and karst reservoirs and the deposition of high quality source rock, which form structural-lithologic traps. Through comprehensive evaluation, two large structural-lithologic composite trap favorable exploration areas in the south and north of the Gaoshiti-Moxi area, were selected.展开更多
基金Supported by the PetroChina and Southwest Petroleum University Cooperation Project(2020CX010101)the National Natural ScienceFoundation of China(91955204).
文摘The largest Precambrian gas field (Anyue gas field) in China has been discovered in the central Sichuan Basin. However, the deep ancient Ediacaran (Sinian) dolomite presents a substantial challenge due to their tightness and heterogeneity, rather than assumed large-area stratified reservoirs controlled by mound-shoal microfacies. This complicates the characterization of “sweet spot” reservoirs crucial for efficient gas exploitation. By analyzing compiled geological, geophysical and production data, this study investigates the impact of strike-slip fault on the development and distribution of high-quality “sweet spot” (fractured-vuggy) reservoirs in the Ediacaran dolomite of the Anyue gas field. The dolomite matrix reservoir exhibits low porosity (less than 4%) and low permeability (less than 0.5×10^(-3) μm^(2)). Contrarily, fractures and their dissolution processes along strike-slip fault zone significantly enhance matrix permeability by more than one order of magnitude and matrix porosity by more than one time. Widespread “sweet spot” fracture-vuggy reservoirs are found along the strike-slip fault zone, formed at the end of the Ediacaran. These fractured reservoirs are controlled by the coupling mechanisms of sedimentary microfacies, fracturing and karstification. Karstification prevails at the platform margin, while both fracturing and karstification control high-quality reservoirs in the intraplatform, resulting in reservoir diversity in terms of scale, assemblage and type. The architecture of the strike-slip fault zone governed the differential distribution of fracture zones and the fault-controlled “sweet spot” reservoirs, leading to wide fractured-vuggy reservoirs across the strike-slip fault zone. In conclusion, the intracratonic weak strike-slip fault can play a crucial role in improving tight carbonate reservoir, and the strike-slip fault-related “sweet spot” reservoir emerges as a unique and promising target for the efficient development of deep hydrocarbon resources. Tailored development strategies need to be implemented for these reservoirs, considering the diverse and differential impacts exerted by strike-slip faults on the reservoirs.
基金Supported by the China National Science and Technology Major Project(2016ZX05007)
文摘Based on the latest seismic data, resistivity profile, outcrop evidence and logging data, the structural features of basement in Sichuan Basin and its control on the hydrocarbon accumulation in the Sinian-Cambrian strata was discussed. It was found that a NE striking pre-Sinian rift was developed across the whole basin. Controlled by a series of rift-parallel normal faults, horst-graben structures were developed inside the rift, large horst-graben structures and later activity of their boundary faults controlled the distribution of beach facies of the overlying strata. The horst-graben structures induced the formation of local highs of ancient landform and controlled the successive development of overlapped bioherm beach facies in long-term marine setting from the Sinian period to the Permian period, and as a result a widely distributed favorable sedimentary facies belt was developed. The pre-Sinian rift and later activities of related normal faults controlled the development of the grain beach and karst reservoirs and the deposition of high quality source rock, which form structural-lithologic traps. Through comprehensive evaluation, two large structural-lithologic composite trap favorable exploration areas in the south and north of the Gaoshiti-Moxi area, were selected.