Technological trends in the automotive industry toward a software-defined and autonomous vehicle require a reassessment of today’s vehicle development process.The validation process soaringly shapes after starting wi...Technological trends in the automotive industry toward a software-defined and autonomous vehicle require a reassessment of today’s vehicle development process.The validation process soaringly shapes after starting with hardware-in-the-loop testing of control units and reproducing real-world maneuvers and physical interaction chains.Here,the road-to-rig approach offers a vast potential to reduce validation time and costs significantly.The present research study investigates the maneuver reproduction of drivability phenomena at a powertrain test bed.Although drivability phenomena occur in the frequency range of most up to 30∙Hz,the design and characteristics substantially impact the test setup’s validity.By utilization of modal analysis,the influence of the test bed on the mechanical characteristic is shown.Furthermore,the sensitivity of the natural modes of each component,from either specimen or test bed site,is determined.In contrast,the uncertainty of the deployed measurement equipment also affects the validity.Instead of an accuracy class indication,we apply the ISO/IEC Guide 98 to the measurement equipment and the test bed setup to increase the fidelity of the validation task.In conclusion,the present paper contributes to a traceable validity determination of the road-to-rig approach by providing objective metrics and methods.展开更多
飞轮混合动力系统(planetary gear set based flywheel hybrid electric powertrain,PGS-FHEP)在提高车辆性能和能源利用率方面具有巨大优势。本文研究对其主要部件进行了设计和匹配,并在等效能耗最小控制策略(equivalent consumption m...飞轮混合动力系统(planetary gear set based flywheel hybrid electric powertrain,PGS-FHEP)在提高车辆性能和能源利用率方面具有巨大优势。本文研究对其主要部件进行了设计和匹配,并在等效能耗最小控制策略(equivalent consumption minimization strategy,ECMS)的基础上,引入动态规划(dynamic programming,DP)控制策略获取最优电池荷电状态(state of charge,SOC)轨迹,通过实时调整遗传算法(genetic algorithm,GA)求得的初始最优等效因子,确保实际SOC轨迹与最优轨迹相符,从而搭建了一种可实时控制的自适应等效能耗最小控制策略(adaptive equivalent consumption minimization strategy,A-ECMS),最终在中国轻型商用车行驶工况(China light-duty commercial vehicle test cycle,CLTC-C)工况下对三种控制策略进行了仿真对比。结果表明,在A-ECMS控制下,较传统ECMS相比,加装PGS-FHEP的飞轮混合动力汽车(flywheel hybrid electric vehicle,FHEV)综合能耗降低了2.51%,控制效果更接近DP控制策略;系统能量回收率可达57.72%,其中,飞轮以机械能形式回收占比23.64%。此外,能量回收过程中,飞轮的参与使电池的峰值功率显著降低。展开更多
文摘Technological trends in the automotive industry toward a software-defined and autonomous vehicle require a reassessment of today’s vehicle development process.The validation process soaringly shapes after starting with hardware-in-the-loop testing of control units and reproducing real-world maneuvers and physical interaction chains.Here,the road-to-rig approach offers a vast potential to reduce validation time and costs significantly.The present research study investigates the maneuver reproduction of drivability phenomena at a powertrain test bed.Although drivability phenomena occur in the frequency range of most up to 30∙Hz,the design and characteristics substantially impact the test setup’s validity.By utilization of modal analysis,the influence of the test bed on the mechanical characteristic is shown.Furthermore,the sensitivity of the natural modes of each component,from either specimen or test bed site,is determined.In contrast,the uncertainty of the deployed measurement equipment also affects the validity.Instead of an accuracy class indication,we apply the ISO/IEC Guide 98 to the measurement equipment and the test bed setup to increase the fidelity of the validation task.In conclusion,the present paper contributes to a traceable validity determination of the road-to-rig approach by providing objective metrics and methods.
文摘飞轮混合动力系统(planetary gear set based flywheel hybrid electric powertrain,PGS-FHEP)在提高车辆性能和能源利用率方面具有巨大优势。本文研究对其主要部件进行了设计和匹配,并在等效能耗最小控制策略(equivalent consumption minimization strategy,ECMS)的基础上,引入动态规划(dynamic programming,DP)控制策略获取最优电池荷电状态(state of charge,SOC)轨迹,通过实时调整遗传算法(genetic algorithm,GA)求得的初始最优等效因子,确保实际SOC轨迹与最优轨迹相符,从而搭建了一种可实时控制的自适应等效能耗最小控制策略(adaptive equivalent consumption minimization strategy,A-ECMS),最终在中国轻型商用车行驶工况(China light-duty commercial vehicle test cycle,CLTC-C)工况下对三种控制策略进行了仿真对比。结果表明,在A-ECMS控制下,较传统ECMS相比,加装PGS-FHEP的飞轮混合动力汽车(flywheel hybrid electric vehicle,FHEV)综合能耗降低了2.51%,控制效果更接近DP控制策略;系统能量回收率可达57.72%,其中,飞轮以机械能形式回收占比23.64%。此外,能量回收过程中,飞轮的参与使电池的峰值功率显著降低。