功率接口装置作为连接数字仿真与被测实物的重要环节,对于功率硬件在环(PHIL)仿真技术的稳定性与精度起到决定性作用。基于PHIL接口等效建模理论,建立PHIL的电路模型,分析其稳定性;基于重复控制理论,设计功率接口控制策略,保证仿真稳定...功率接口装置作为连接数字仿真与被测实物的重要环节,对于功率硬件在环(PHIL)仿真技术的稳定性与精度起到决定性作用。基于PHIL接口等效建模理论,建立PHIL的电路模型,分析其稳定性;基于重复控制理论,设计功率接口控制策略,保证仿真稳定性与精度;加入电压外环P控制,提高动态性能。搭建PHIL仿真试验平台,以380 V、50 k W功率接口装置实现了复杂系统的混合实时仿真,且稳态特性好、动态响应快、鲁棒性强。展开更多
混合实时仿真技术又称为硬件在环(Hardware In the Loop,HIL)仿真技术作为新兴的仿真技术,受到广泛的关注,其突出的可靠性与准确性已被证明是电力系统规划、设计、装置测试及新能源并网测试等方面的有效手段,然而稳定性与精度问题是HIL...混合实时仿真技术又称为硬件在环(Hardware In the Loop,HIL)仿真技术作为新兴的仿真技术,受到广泛的关注,其突出的可靠性与准确性已被证明是电力系统规划、设计、装置测试及新能源并网测试等方面的有效手段,然而稳定性与精度问题是HIL仿真技术的关键指标,为了改变HIL仿真的稳定性与精度,提出了几种不同的HIL仿真接口算法,并建立HIL仿真系统模型,分析其稳定性与精度。并分析比较几种不同接口算法对原系统的稳定性与精度的改进,得出最佳的功率接口算法,最终通过仿真来验证所提出的功率接口算法的有效性与准确性。具有极强的工程使用价值,为硬件在环仿真技术的研究、发展提供了基本保障和良好的平台。展开更多
数字物理混合仿真已成为模块化多电平换流器柔性直流输电技术(modular multilevel converter based high voltage direct current,MMC-HVDC)的重要研究手段,而接口算法是保证其系统稳定性和仿真精确性的关键技术。基于理想变压器模型法...数字物理混合仿真已成为模块化多电平换流器柔性直流输电技术(modular multilevel converter based high voltage direct current,MMC-HVDC)的重要研究手段,而接口算法是保证其系统稳定性和仿真精确性的关键技术。基于理想变压器模型法与阻尼阻抗法接口特性的对比分析,提出了一种基于自适应模式切换的新型接口算法,可在保证MMC-HVDC数字物理混合仿真系统稳定性的同时提高仿真精度。针对阻尼阻抗法,提出了物理动模交流场等效阻抗的精确计算方法,并简化了MMC交流侧等效阻抗的计算过程,实现了阻抗的实时匹配;根据2种接口算法的结构原理,在阻尼阻抗法的附加阻抗支路增加了一个可控开关,并以理想变压器模型法接口稳定性为依据设计了开关的动作条件及其误动的解决方案,进而设计新型接口算法的实现流程,保证接口特性的有效切换。通过数字仿真对比分析了新型接口算法与常用接口算法的接口特性,验证了其优越的稳定性和精确性。最后,设计了适用于MMC-HVDC数字物理混合仿真平台的启动方案,并通过硬件在环实验验证了所提方法的有效性和可行性。展开更多
文摘功率接口装置作为连接数字仿真与被测实物的重要环节,对于功率硬件在环(PHIL)仿真技术的稳定性与精度起到决定性作用。基于PHIL接口等效建模理论,建立PHIL的电路模型,分析其稳定性;基于重复控制理论,设计功率接口控制策略,保证仿真稳定性与精度;加入电压外环P控制,提高动态性能。搭建PHIL仿真试验平台,以380 V、50 k W功率接口装置实现了复杂系统的混合实时仿真,且稳态特性好、动态响应快、鲁棒性强。
文摘混合实时仿真技术又称为硬件在环(Hardware In the Loop,HIL)仿真技术作为新兴的仿真技术,受到广泛的关注,其突出的可靠性与准确性已被证明是电力系统规划、设计、装置测试及新能源并网测试等方面的有效手段,然而稳定性与精度问题是HIL仿真技术的关键指标,为了改变HIL仿真的稳定性与精度,提出了几种不同的HIL仿真接口算法,并建立HIL仿真系统模型,分析其稳定性与精度。并分析比较几种不同接口算法对原系统的稳定性与精度的改进,得出最佳的功率接口算法,最终通过仿真来验证所提出的功率接口算法的有效性与准确性。具有极强的工程使用价值,为硬件在环仿真技术的研究、发展提供了基本保障和良好的平台。
文摘数字物理混合仿真已成为模块化多电平换流器柔性直流输电技术(modular multilevel converter based high voltage direct current,MMC-HVDC)的重要研究手段,而接口算法是保证其系统稳定性和仿真精确性的关键技术。基于理想变压器模型法与阻尼阻抗法接口特性的对比分析,提出了一种基于自适应模式切换的新型接口算法,可在保证MMC-HVDC数字物理混合仿真系统稳定性的同时提高仿真精度。针对阻尼阻抗法,提出了物理动模交流场等效阻抗的精确计算方法,并简化了MMC交流侧等效阻抗的计算过程,实现了阻抗的实时匹配;根据2种接口算法的结构原理,在阻尼阻抗法的附加阻抗支路增加了一个可控开关,并以理想变压器模型法接口稳定性为依据设计了开关的动作条件及其误动的解决方案,进而设计新型接口算法的实现流程,保证接口特性的有效切换。通过数字仿真对比分析了新型接口算法与常用接口算法的接口特性,验证了其优越的稳定性和精确性。最后,设计了适用于MMC-HVDC数字物理混合仿真平台的启动方案,并通过硬件在环实验验证了所提方法的有效性和可行性。