期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Effect of ultrasonic power and casting speed on solidification structure of 7050 aluminum alloy ingot in ultrasonic field 被引量:21
1
作者 张立华 余军 张晓明 《Journal of Central South University》 SCIE EI CAS 2010年第3期431-436,共6页
With the experiment and finite element simulation, the influences of power ultrasonic on the solidification structure of 7050 aluminum alloy ingot in semi-continuous casting were researched, and the effects of casting... With the experiment and finite element simulation, the influences of power ultrasonic on the solidification structure of 7050 aluminum alloy ingot in semi-continuous casting were researched, and the effects of casting speed on solidification structure in ultrasonic field were also analyzed. The experiment and simulation results show that the solidification structure of the ingot is homogeneously distributed, and its grain size is obviously refined at ultrasonic power of 240 W. The average grain sizes, which can be seen from the Leica microscope, are less than 100 μm. When the casting speed is 45-50 mm/min, the best grain refinement is obtained. 展开更多
关键词 7050 aluminum alloy ultrasonic power casting speed semi-continuous casting solidification structure
在线阅读 下载PDF
Ultrasonic power features of wire bonding and thermosonic flip chip bonding in microelectronics packaging 被引量:2
2
作者 李军辉 韩雷 钟掘 《Journal of Central South University of Technology》 EI 2008年第5期684-688,共5页
The driving voltage and current signals of piezoceramic transducer (PZT) were measured directly by designing circuits from ultrasonic generator and using a data acquisition software system. The input impedance and pow... The driving voltage and current signals of piezoceramic transducer (PZT) were measured directly by designing circuits from ultrasonic generator and using a data acquisition software system. The input impedance and power of PZT were investigated by using root mean square (RMS) calculation. The vibration driven by high frequency was tested by laser Doppler vibrometer (PSV-400-M2). And the thermosonic bonding features were observed by scanning electron microscope (JSM-6360LV). The results show that the input power of bonding is lower than that of no load. The input impedance of bonding is greater than that of no load. Nonlinear phase, plastic flow and expansion period, and strengthening bonding process are shown in the impedance and power curves. The ultrasonic power is in direct proportion to the vibration displacement driven by the power, and greater displacements driven by high power (>5 W) result in welding failure phenomena, such as crack, break, and peeling off in wedge bonding. For thermosonic flip chip bonding, the high power decreases position precision of bonding or results in slippage and rotation phenomena of bumps. To improve reliability and precision of thermosonic bonding, the low ultrasonic power (about 1-5 W) should be chosen. 展开更多
关键词 ultrasonic power wedge bonding thermosonic flip chip input impedance FAILURE
在线阅读 下载PDF
Impact of ultrasonic power on liquid fraction,microstructure and physical characteristics of A356 alloy molded through cooling slope
3
作者 Pabak MOHAPATRA Nirmal Kumar KUND 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第4期1098-1106,共9页
This study involves A356 alloy molded through ultrasonically vibrated cooling slope.The slope alongside ultrasonic power enables indispensable shear for engendering slurry from which the semisolid cast/heat treated bi... This study involves A356 alloy molded through ultrasonically vibrated cooling slope.The slope alongside ultrasonic power enables indispensable shear for engendering slurry from which the semisolid cast/heat treated billets got produced.An examination demonstrates ultrasonically vibrated cooling slope influencing the liquid fraction/microstructure/physical characteristics of stated billets.The investigation encompasses five diverse ultrasonic powers(0,75,150,200,250 W).The ultrasonic power of 150 W delivers finest/rounded microstructure with enhanced physical characteristics.Microstructural modifications reason physical transformations because of grain refinement and grain boundary/Hall-Petch strengthening.A smaller grain size reasons a higher strength/shape factor and an increased homogeneity reasons a higher ductility.Microstructural characteristics get improved by reheating.It is owing to coalescence throughout temperature homogenization.The physical characteristics is improved by reheating because of a reduced porosity and enhanced dissolution besides augmented homogeneity.A direct comparison remains impossible owing to unavailability of researches on ultrasonically vibrated cooling slope. 展开更多
关键词 ultrasonic power MICROSTRUCTURE physical characteristics semisolid cast A356 alloy cooling slope
在线阅读 下载PDF
Interface evolution mechanism and model of atomic diffusion during Al-Au ultrasonic bonding
4
作者 ZHANG Wei-xi LUO Jiao +2 位作者 CHEN Xiao-hong WANG Bo-zhe YUAN Hai 《Journal of Central South University》 2025年第3期806-819,共14页
Effects of ultrasonic bonding parameters on atomic diffusion, microstructure at the Al-Au interface, and shear strength of Al-Au ultrasonic bonding were investigated by the combining experiments and finite element (FE... Effects of ultrasonic bonding parameters on atomic diffusion, microstructure at the Al-Au interface, and shear strength of Al-Au ultrasonic bonding were investigated by the combining experiments and finite element (FE) simulation. The quantitative model of atomic diffusion, which is related to the ultrasonic bonding parameters, time and distance, is established to calculate the atomic diffusion of the Al-Au interface. The maximum relative error between the calculated and experimental fraction of Al atom is 7.35%, indicating high prediction accuracy of this model. During the process of ultrasonic bonding, Au8Al3 is the main intermetallic compound (IMC) at the Al-Au interface. With larger bonding forces, higher ultrasonic powers and longer bonding time, it is more difficult to remove the oxide particles from the Al-Au interface, which hinders the atomic diffusion. Therefore, the complicated stress state and the existence of oxide particles both promotes the formation of holes. The shear strength of Al-Au ultrasonic bonding increases with increasing bonding force, ultrasonic power and bonding time. However, combined with the presence of holes at especial parameters, the optimal ultrasonic bonding parameter is confirmed to be a bonding force of 23 gf, ultrasonic power of 75 mW and bonding time of 21 ms. 展开更多
关键词 Al-Au ultrasonic bonding model of atomic diffusion Au_(8)Al_(3) shear strength ultrasonic power
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部