变压器套管作为设备重要的绝缘部件,其绝缘性能直接影响着设备的安全运行。为诊断变压器套管绝缘状态,改善变压器套管油中溶解气体的小样本不平衡数据对变压器套管故障诊断结果的影响,使用粒子群优化结合反向传播神经网络(particle swar...变压器套管作为设备重要的绝缘部件,其绝缘性能直接影响着设备的安全运行。为诊断变压器套管绝缘状态,改善变压器套管油中溶解气体的小样本不平衡数据对变压器套管故障诊断结果的影响,使用粒子群优化结合反向传播神经网络(particle swarm optimization combined with back propagation neural network,PSO-BPNN)和自适应综合过采样(adaptive synthetic sampling,ADASYN)算法对变压器套管进行故障诊断。首先收集变压器套管的历史故障数据,建立具有明确故障类别的变压器套管油中溶解气体样本集,并通过ADASYN算法对原始数据中的少数类样本进行合成,得到平衡后的故障数据,然后将平衡后的油中溶解气体作为模型输入,故障状态作为标签输出,通过PSO-BPNN模型对变压器套管进行诊断,最后在原始样本集下使用反向传播神经网络(back propagation neural network,BPNN)、遗传结合反向传播神经网络(genetic combined with back propagation neural network,G-BPNN)算法、布谷鸟搜索结合反向传播神经网络(cuckoo search combined with back propagation neural network,CS-BPNN)算法以及PSO-BPNN模型对套管进行诊断。结果表明,针对变压器油纸套管绝缘状态进行故障诊断的多个模型中,基于ADASYN平衡数据后的PSO-BPNN模型和其他模型相比准确度最高,能有效减小小样本不平衡数据对诊断结果的影响,为判断变压器油纸套管绝缘性能提供了有效方法。展开更多
油中溶解气体分析(dissolved gas analysis,DGA)是现场电力变压器故障诊断最常用的方法。然而,油中溶解气体含量较容易受到变压器结构、容量、故障位置以及故障程度等因素的影响,从而降低了变压器故障诊断的可靠性。为了提升变压器故...油中溶解气体分析(dissolved gas analysis,DGA)是现场电力变压器故障诊断最常用的方法。然而,油中溶解气体含量较容易受到变压器结构、容量、故障位置以及故障程度等因素的影响,从而降低了变压器故障诊断的可靠性。为了提升变压器故障诊断正确率,该文提出了基于支持向量机(support vector machie,SVM)和遗传算法(geneti calgorithm,GA)优选的DGA新特征参量。首先,以28个DGA比值为输入,建立了基于SVM的变压器故障诊断模型;其次,采用GA同时对SVM参数和DGA比值进行优化,得到9个优选DGA比值作为变压器故障诊断用新特征参量。对IEC TC 10故障数据库的诊断结果表明:DGA新特征参量的故障诊断正确率为84%,较常用的DGA含量和IEC比值的诊断正确率提高10%~25%;并且无论采用哪种特征参量,支持向量机的诊断结果均优于神经网络诊断模型。最后,采用DGA新特征参量对国内117组变压器的故障诊断正确率达到了87.18%,再次验证了该方法的有效性。展开更多
油中溶解气体分析(dissolved gas analysis,DGA)是变压器故障诊断的重要方法。变压器故障诊断研究大多采用人工智能方法学习建立单个分类器,与单个分类器相比,分类器群能够更全面地学习样本集特性,达到更好的诊断效果。分类器间的差异...油中溶解气体分析(dissolved gas analysis,DGA)是变压器故障诊断的重要方法。变压器故障诊断研究大多采用人工智能方法学习建立单个分类器,与单个分类器相比,分类器群能够更全面地学习样本集特性,达到更好的诊断效果。分类器间的差异性是影响群体性能的主要因素,针对DGA特征量较少训练得到的分类器差异不大的问题,提出将核主成分分析(kernel principle component analysis,KPCA)与随机森林方法相结合,KPCA将样本从低维的状态空间非线性地映射到高维的核空间,在核空间用随机森林方法训练得到分类器群。对DGA故障样本以及加噪样本的诊断实验结果表明,KPCA能够有效地提取故障特征,用核特征量建模的诊断效果优于直接采用DGA特征量,分类器群的诊断效果以及抗干扰能力均高于单个分类器。展开更多
文摘变压器套管作为设备重要的绝缘部件,其绝缘性能直接影响着设备的安全运行。为诊断变压器套管绝缘状态,改善变压器套管油中溶解气体的小样本不平衡数据对变压器套管故障诊断结果的影响,使用粒子群优化结合反向传播神经网络(particle swarm optimization combined with back propagation neural network,PSO-BPNN)和自适应综合过采样(adaptive synthetic sampling,ADASYN)算法对变压器套管进行故障诊断。首先收集变压器套管的历史故障数据,建立具有明确故障类别的变压器套管油中溶解气体样本集,并通过ADASYN算法对原始数据中的少数类样本进行合成,得到平衡后的故障数据,然后将平衡后的油中溶解气体作为模型输入,故障状态作为标签输出,通过PSO-BPNN模型对变压器套管进行诊断,最后在原始样本集下使用反向传播神经网络(back propagation neural network,BPNN)、遗传结合反向传播神经网络(genetic combined with back propagation neural network,G-BPNN)算法、布谷鸟搜索结合反向传播神经网络(cuckoo search combined with back propagation neural network,CS-BPNN)算法以及PSO-BPNN模型对套管进行诊断。结果表明,针对变压器油纸套管绝缘状态进行故障诊断的多个模型中,基于ADASYN平衡数据后的PSO-BPNN模型和其他模型相比准确度最高,能有效减小小样本不平衡数据对诊断结果的影响,为判断变压器油纸套管绝缘性能提供了有效方法。