期刊文献+
共找到86篇文章
< 1 2 5 >
每页显示 20 50 100
多策略融合改进AO优化SVM的变压器故障诊断研究 被引量:2
1
作者 谢国民 齐晓亮 《控制工程》 CSCD 北大核心 2024年第11期2000-2009,共10页
针对变压器故障诊断精度不高的问题,提出了一种多策略融合改进天鹰优化器(IAO)优化支持向量机(SVM)的变压器故障诊断模型。首先,采用核主成分分析(KPCA)方法对高维度据进行降维,减少数据中的稀疏性对结果的影响;其次,利用Tent混沌映射... 针对变压器故障诊断精度不高的问题,提出了一种多策略融合改进天鹰优化器(IAO)优化支持向量机(SVM)的变压器故障诊断模型。首先,采用核主成分分析(KPCA)方法对高维度据进行降维,减少数据中的稀疏性对结果的影响;其次,利用Tent混沌映射、动态扰动因子策略、点对称策略改善其寻优能力和收敛速度,通过算法寻优能力测试验证了其优越性;最后,利用IAO对SVM的参数寻优,克服SVM参数选择不良的弊端,建立变压器故障诊断模型。结果显示,与AO、WOA、GWO优化SVM相比,IAO优化SVM的诊断正确率分别提升了7.08%、9.74%、15.93%,同时,也优于最小二乘支持向量机(LSSVM)、BP神经网络(BPNN)、随机森林(RF)典型分类模型,验证了所建立的变压器故障诊断模型的优越性,并具有较强的泛化能力。 展开更多
关键词 变压器 故障诊断 油中溶解气体分析 算法改进 支持向量机
在线阅读 下载PDF
基于DGA与TPE-LightGBM的变压器故障诊断 被引量:4
2
作者 杨金鑫 廖才波 +3 位作者 胡雄 朱文清 张旭 刘邦 《电力科学与技术学报》 CAS CSCD 北大核心 2024年第4期70-77,共8页
油中溶解气体分析(dissolved gas analysis,DGA)对变压器故障的早期预警及诊断具有重要意义。为了提升变压器故障诊断的准确性及可靠性,提出一种基于树结构概率密度估计(tree-structured parzen estimator,TPE)算法优化轻量级梯度提升机... 油中溶解气体分析(dissolved gas analysis,DGA)对变压器故障的早期预警及诊断具有重要意义。为了提升变压器故障诊断的准确性及可靠性,提出一种基于树结构概率密度估计(tree-structured parzen estimator,TPE)算法优化轻量级梯度提升机(light gradient boosting machine,LightGBM)的变压器故障诊断方法。首先,建立包含油中气体比值、编码等16维DGA特征集合,采用最小绝对收缩和选择(least absolute shrinkage and selection opera-tor,LASSO)算法选择用于变压器故障诊断的有效特征量;其次,构建基于LightGBM的变压器故障诊断方法,并引入TPE算法对LightGBM诊断模型参数进行优化,形成最优故障诊断模型;最后,选用精确度、召回率和F1分数等评价指标对所提诊断模型性能进行评估。研究结果表明,TPE-LightGBM的平均准确率为90.23%,其诊断精度及鲁棒性均优于RF和XGBoost等算法。同时,与现场常用的三比值法进行对比,所提方法的准确性和可靠性均有显著提升。该方法可有效提升电力变压器的智能运维水平。 展开更多
关键词 变压器 油中溶解气体 故障诊断 树结构概率密度估计 LASSO算法 轻量级梯度提升机
在线阅读 下载PDF
基于油中溶解气体特征量筛选的变压器故障诊断方法 被引量:12
3
作者 廖才波 杨金鑫 +3 位作者 胡雄 邱志斌 刘小天 朱文清 《电力工程技术》 北大核心 2024年第1期192-200,共9页
油中溶解气体分析对变压器故障预警及诊断具有重要意义。针对油中溶解气体特征量种类众多、故障关联特征分析不足等问题,文中以油浸式变压器为研究对象,提出了基于油中溶解气体特征量筛选的变压器故障诊断方法。首先,对油中溶解气体的... 油中溶解气体分析对变压器故障预警及诊断具有重要意义。针对油中溶解气体特征量种类众多、故障关联特征分析不足等问题,文中以油浸式变压器为研究对象,提出了基于油中溶解气体特征量筛选的变压器故障诊断方法。首先,对油中溶解气体的原始特征量进行特征衍生,通过随机森林(random forest,RF)计算特征量对故障诊断的重要度,筛选得到最佳特征组合。其次,采用树结构概率密度估计(tree-structured parzen estimator,TPE)实现RF模型的参数寻优,并形成TPE-RF诊断模型。同时,结合多种评价指标,证明所提方法能够对变压器作出准确的故障诊断。最后,提出TreeSAHP模型分析特征量对各故障的重要度,优选出各故障关联的主要特征量,并根据变压器运行案例,探讨了该方法在电力行业现场应用中的适用性,验证了该方法的有效性。 展开更多
关键词 油中溶解气体 变压器 故障诊断 树结构概率密度估计(TPE) 随机森林(RF) 特征筛选 TreeSHAP模型
在线阅读 下载PDF
基于ADASYN数据平衡化的PSO-BPNN变压器套管故障诊断 被引量:5
4
作者 杨昊 胡文秀 +3 位作者 张璐 陈晋鹏 周思佳 赵思瑞 《电力工程技术》 北大核心 2024年第2期170-178,共9页
变压器套管作为设备重要的绝缘部件,其绝缘性能直接影响着设备的安全运行。为诊断变压器套管绝缘状态,改善变压器套管油中溶解气体的小样本不平衡数据对变压器套管故障诊断结果的影响,使用粒子群优化结合反向传播神经网络(particle swar... 变压器套管作为设备重要的绝缘部件,其绝缘性能直接影响着设备的安全运行。为诊断变压器套管绝缘状态,改善变压器套管油中溶解气体的小样本不平衡数据对变压器套管故障诊断结果的影响,使用粒子群优化结合反向传播神经网络(particle swarm optimization combined with back propagation neural network,PSO-BPNN)和自适应综合过采样(adaptive synthetic sampling,ADASYN)算法对变压器套管进行故障诊断。首先收集变压器套管的历史故障数据,建立具有明确故障类别的变压器套管油中溶解气体样本集,并通过ADASYN算法对原始数据中的少数类样本进行合成,得到平衡后的故障数据,然后将平衡后的油中溶解气体作为模型输入,故障状态作为标签输出,通过PSO-BPNN模型对变压器套管进行诊断,最后在原始样本集下使用反向传播神经网络(back propagation neural network,BPNN)、遗传结合反向传播神经网络(genetic combined with back propagation neural network,G-BPNN)算法、布谷鸟搜索结合反向传播神经网络(cuckoo search combined with back propagation neural network,CS-BPNN)算法以及PSO-BPNN模型对套管进行诊断。结果表明,针对变压器油纸套管绝缘状态进行故障诊断的多个模型中,基于ADASYN平衡数据后的PSO-BPNN模型和其他模型相比准确度最高,能有效减小小样本不平衡数据对诊断结果的影响,为判断变压器油纸套管绝缘性能提供了有效方法。 展开更多
关键词 变压器套管 故障诊断 油中溶解气体 反向传播神经网络(BPNN) 不平衡数据 自适应综合过采样(ADASYN)
在线阅读 下载PDF
变压器故障诊断用油中溶解气体新特征参量 被引量:121
5
作者 汪可 李金忠 +4 位作者 张书琦 孙建涛 王健一 高飞 程涣超 《中国电机工程学报》 EI CSCD 北大核心 2016年第23期6570-6578,6625,共9页
油中溶解气体分析(dissolved gas analysis,DGA)是现场电力变压器故障诊断最常用的方法。然而,油中溶解气体含量较容易受到变压器结构、容量、故障位置以及故障程度等因素的影响,从而降低了变压器故障诊断的可靠性。为了提升变压器故... 油中溶解气体分析(dissolved gas analysis,DGA)是现场电力变压器故障诊断最常用的方法。然而,油中溶解气体含量较容易受到变压器结构、容量、故障位置以及故障程度等因素的影响,从而降低了变压器故障诊断的可靠性。为了提升变压器故障诊断正确率,该文提出了基于支持向量机(support vector machie,SVM)和遗传算法(geneti calgorithm,GA)优选的DGA新特征参量。首先,以28个DGA比值为输入,建立了基于SVM的变压器故障诊断模型;其次,采用GA同时对SVM参数和DGA比值进行优化,得到9个优选DGA比值作为变压器故障诊断用新特征参量。对IEC TC 10故障数据库的诊断结果表明:DGA新特征参量的故障诊断正确率为84%,较常用的DGA含量和IEC比值的诊断正确率提高10%~25%;并且无论采用哪种特征参量,支持向量机的诊断结果均优于神经网络诊断模型。最后,采用DGA新特征参量对国内117组变压器的故障诊断正确率达到了87.18%,再次验证了该方法的有效性。 展开更多
关键词 电力变压器 故障诊断 油中溶解气体比值 支持向量机 遗传算法 IEC TC 10数据库
在线阅读 下载PDF
基于遗传算法进化小波神经网络的电力变压器故障诊断 被引量:62
6
作者 潘翀 陈伟根 +2 位作者 云玉新 杜林 孙才新 《电力系统自动化》 EI CSCD 北大核心 2007年第13期88-92,共5页
在电力变压器故障诊断方法中,小波神经网络常用的反向传播算法存在着易陷入局部极小点和对初值要求较高的缺点,往往给故障诊断带来困难。文中提出了一种基于遗传算法进化小波神经网络的变压器故障诊断方法,用实数编码的遗传算法来代替... 在电力变压器故障诊断方法中,小波神经网络常用的反向传播算法存在着易陷入局部极小点和对初值要求较高的缺点,往往给故障诊断带来困难。文中提出了一种基于遗传算法进化小波神经网络的变压器故障诊断方法,用实数编码的遗传算法来代替人解决小波神经网络结构的选择和参数的设定。在整个学习过程中,网络的复杂度、收敛性和泛化能力得到了较好的综合。大量实例表明,该方法能有效地对电力变压器单故障和多故障样本进行分类,提高了诊断准确率。 展开更多
关键词 电力变压器 故障诊断 油中溶解气体分析 遗传算法进化 小波神经网络 遗传算法
在线阅读 下载PDF
基于支持向量机及油中溶解气体分析的大型电力变压器故障诊断模型研究 被引量:185
7
作者 董明 孟源源 +1 位作者 徐长响 严璋 《中国电机工程学报》 EI CSCD 北大核心 2003年第7期88-92,共5页
提出用支持向量机作为分层决策电力变压器故障诊断模型。首先通过相关统计分析,选择典型油中气体作为支持向量机输入参数,然后在深入发掘油中气体所含故障信息基础上,利用典型故障气体的相对含量在高维空间的分布特性进行变压器故障类... 提出用支持向量机作为分层决策电力变压器故障诊断模型。首先通过相关统计分析,选择典型油中气体作为支持向量机输入参数,然后在深入发掘油中气体所含故障信息基础上,利用典型故障气体的相对含量在高维空间的分布特性进行变压器故障类型诊断。该方法基于小训练样本条件下寻求最优解,具有很好的推广能力及一致性等优点,还适用 于变压器典型故障数据少的特点。文中还给出了两种不同支持向量机核函数分类结果的比较。为了提高故障诊断的正判率,该模型同时在相关性强的特征气体之间,利用K-近邻搜索聚类在最优分类面附近对分类结果进行精确逼近,使分层决策模型可靠性显著改善。计算结果表明,该模型具有很好的分类效果。 展开更多
关键词 大型电力变压器 故障诊断模型 支持向量机 溶解气体分析 绝缘油
在线阅读 下载PDF
基于BP网络算法优化模糊Petri网的电力变压器故障诊断 被引量:65
8
作者 公茂法 张言攀 +2 位作者 柳岩妮 王志文 刘丽娟 《电力系统保护与控制》 EI CSCD 北大核心 2015年第3期113-117,共5页
为了提高电力变压器故障诊断的正确率,提出了一种基于BP网络算法优化模糊Petri网的电力变压器故障诊断方法。利用具有自学习、自适应能力的BP网络算法,在确定模糊Petri网的权值、阈值、可信度等网络参数初始值的前提下,实现模糊Petri网... 为了提高电力变压器故障诊断的正确率,提出了一种基于BP网络算法优化模糊Petri网的电力变压器故障诊断方法。利用具有自学习、自适应能力的BP网络算法,在确定模糊Petri网的权值、阈值、可信度等网络参数初始值的前提下,实现模糊Petri网网络参数的优化。在模糊Petri网网络结构上,运用BP网络算法,对电力变压器DGA样本进行学习训练,使模糊Petri网网络参数逐步向真实值逼近。实例分析结果表明,该方法能够有效地诊断电力变压器中的单一故障和多重故障,提高故障诊断正确率,证明了方法的正确性和有效性。 展开更多
关键词 变压器 故障诊断 油中溶解气体分析 BP网络 模糊PETRI网
在线阅读 下载PDF
基于小波网络及油中溶解气体分析的电力变压器故障诊断方法 被引量:32
9
作者 陈伟根 潘翀 +2 位作者 云玉新 王有元 孙才新 《中国电机工程学报》 EI CSCD 北大核心 2008年第7期121-126,共6页
小波网络是近年来发展起来的一种高效非线性信号处理新模型。该文将适于电力变压器故障诊断的小波网络分为第一、第二类小波网络,提出了基于自适应算法小波网络的变压器故障诊断方法,该方法继承了人工神经网络的学习能力和小波变换的局... 小波网络是近年来发展起来的一种高效非线性信号处理新模型。该文将适于电力变压器故障诊断的小波网络分为第一、第二类小波网络,提出了基于自适应算法小波网络的变压器故障诊断方法,该方法继承了人工神经网络的学习能力和小波变换的局部化特征,具有良好的收敛性和鲁棒性。选择经模糊预处理的250组油中溶解气体作为采用不同小波基的2类小波网络训练与识别样本,对训练过程和仿真结果进行对比分析。大量诊断实例表明,文中提出的2类小波网络均适于变压器故障诊断,其性能优于单独使用传统BP神经网络的方法。 展开更多
关键词 电力变压器 故障诊断 小波网络 油中溶解气体分析
在线阅读 下载PDF
基于深度自编码网络的电力变压器故障诊断 被引量:82
10
作者 石鑫 朱永利 +3 位作者 宁晓光 王刘旺 孙岗 陈国强 《电力自动化设备》 EI CSCD 北大核心 2016年第5期122-126,共5页
基于深度自编码网络(DAEN),构建了分类深度自编码网络(CDAEN)模型。结合电力变压器在线监测油中溶解气体分析(DGA)数据,提出了基于CDAEN的变压器故障诊断方法。所提方法利用大量无标签样本进行预训练,优化模型参数,并利用少量有标签样... 基于深度自编码网络(DAEN),构建了分类深度自编码网络(CDAEN)模型。结合电力变压器在线监测油中溶解气体分析(DGA)数据,提出了基于CDAEN的变压器故障诊断方法。所提方法利用大量无标签样本进行预训练,优化模型参数,并利用少量有标签样本进行微调。实例分析表明,与基于反向传播神经网络(BPNN)、支持向量机(SVM)的故障诊断方法相比,所提方法的诊断正确率更高。 展开更多
关键词 深度自编码网络 电力变压器 故障诊断 油中溶解气体分析 反向传播神经网络 支持向量机
在线阅读 下载PDF
基于灰关联熵的充油变压器故障诊断方法 被引量:33
11
作者 宋斌 于萍 +1 位作者 罗运柏 文习山 《电力系统自动化》 EI CSCD 北大核心 2005年第18期76-79,共4页
油中溶解气体分析是目前发现变压器潜伏性故障的重要方法,鉴于用IEC推荐的三比值法中编码缺陷(编码超出码表)及变压器故障诊断的复杂性,文中详细阐述了如何将灰关联熵应用于变压器故障诊断。首先通过统计方法,选择典型油中气体作为参考... 油中溶解气体分析是目前发现变压器潜伏性故障的重要方法,鉴于用IEC推荐的三比值法中编码缺陷(编码超出码表)及变压器故障诊断的复杂性,文中详细阐述了如何将灰关联熵应用于变压器故障诊断。首先通过统计方法,选择典型油中气体作为参考列,并经反复调整,挖掘出油中气体所含故障信息,然后利用灰关联熵方法进行变压器故障类型诊断。该方法基于融合互补的思想,将灰关联分析方法与信息熵理论有机结合起来,克服了单一灰关联分析中易造成局部关联及信息损失等缺陷,尽可能多地包含变压器本体所含信息。实例分析结果表明,该方法具有较好的分类效果。 展开更多
关键词 变压器 故障诊断 溶解气体分析 灰关联熵
在线阅读 下载PDF
基于改进小波神经网络算法的电力变压器故障诊断方法 被引量:22
12
作者 陈伟根 潘翀 +2 位作者 云玉新 王有元 孙才新 《仪器仪表学报》 EI CAS CSCD 北大核心 2008年第7期1489-1493,共5页
大型电力变压器作为电力系统的枢纽设备,其运行可靠性直接关系到电力系统的安全与稳定。针对基于BP算法的小波神经网络存在收敛速度慢、搜索空间局部极小及易引起振荡等不足,本文以变压器油中溶解气体为分析对象,提出采用动量项和变学... 大型电力变压器作为电力系统的枢纽设备,其运行可靠性直接关系到电力系统的安全与稳定。针对基于BP算法的小波神经网络存在收敛速度慢、搜索空间局部极小及易引起振荡等不足,本文以变压器油中溶解气体为分析对象,提出采用动量项和变学习率改进小波神经网络的变压器故障诊断算法。选择400组油中溶解气体含量作为小波神经网络训练及故障识别样本,对训练过程和仿真结果进行对比分析。实验结果表明:较之比值法,改进的小波神经网络故障诊断算法在故障识别准确率和收敛时间方面表现更优。 展开更多
关键词 变压器 油中溶解气体分析 故障诊断 小波神经网络 改进算法
在线阅读 下载PDF
基于核可能性聚类算法和油中溶解气体分析的电力变压器故障诊断研究 被引量:57
13
作者 熊浩 孙才新 +2 位作者 廖瑞金 李剑 杜林 《中国电机工程学报》 EI CSCD 北大核心 2005年第20期162-166,共5页
变压器油中溶解气体分析(DissolvedGasAnalysis,DGA)是电力变压器绝缘诊断的重要方法。针对模糊C均值聚类算法用于溶解气体成分分析时存在的问题,文中将核函数和可能性聚类算法相结合,提出一种简化的核可能性聚类算法,并将其用于变压器... 变压器油中溶解气体分析(DissolvedGasAnalysis,DGA)是电力变压器绝缘诊断的重要方法。针对模糊C均值聚类算法用于溶解气体成分分析时存在的问题,文中将核函数和可能性聚类算法相结合,提出一种简化的核可能性聚类算法,并将其用于变压器DGA数据分析,从而实现变压器的故障诊断。经实践证明,该算法能快速、有效地对样本进行聚类,且特别适用于含有噪声样本的环境。 展开更多
关键词 电力变压器 溶解气体分析 核函数 可能性聚类 故障诊断
在线阅读 下载PDF
基于云物元分析原理的电力变压器故障诊断方法研究 被引量:24
14
作者 谢庆 彭澎 +3 位作者 唐山 李燕青 郑娜 律方成 《高压电器》 CAS CSCD 北大核心 2009年第6期74-77,82,共5页
变压器油中溶解气体分析(DGA)是电力变压器故障诊断的重要方法。针对物元理论变压器故障诊断方法中,在建立故障模式物元模型时没有考虑边界值的不确定性的不足,首次在变压器故障诊断研究方面引入云模型,结合云模型的不确定推理特性以及... 变压器油中溶解气体分析(DGA)是电力变压器故障诊断的重要方法。针对物元理论变压器故障诊断方法中,在建立故障模式物元模型时没有考虑边界值的不确定性的不足,首次在变压器故障诊断研究方面引入云模型,结合云模型的不确定推理特性以及物元理论能同时进行定性定量分析问题的优点,提出了一种基于云物元分析原理和DGA相结合的电力变压器故障诊断新方法。通过建立变压器故障诊断的云物元模型和计算特征云物元与标准云物元之间的关联函数,实现对变压器故障模式的有效识别。实例分析验证了方法的正确性和有效性。 展开更多
关键词 电力变压器 DGA 云模型 云物元分析原理 故障诊断
在线阅读 下载PDF
油气分析诊断变压器故障方法的改进 被引量:18
15
作者 董明 赵文彬 严璋 《高电压技术》 EI CAS CSCD 北大核心 2002年第4期6-8,共3页
针对油中溶解气体分析 (DGA)中原来采用比值法的某些不足 ,通过对大量数据的统计、分析 ,在变压器吊芯结果所确定典型故障分类的基础上 ,提出了比值范围法改进三比值变压器故障诊断。
关键词 油气分析 电力变压器 故障诊断 技术改进
在线阅读 下载PDF
基于组合决策树的油浸式电力变压器故障诊断 被引量:41
16
作者 董明 屈彦明 +1 位作者 周孟戈 严璋 《中国电机工程学报》 EI CSCD 北大核心 2005年第16期35-41,共7页
提出了一种利用属于模式识别范畴的决策树C4.5法进行变压器故障诊断的方法。由于C4.5方法可方便地处理连续特征模式且有从样本学习判定规则的功能,因此应用中显示了该方法对于变压器故障诊断的适用性。在讨论变压器故障空间的基础上,针... 提出了一种利用属于模式识别范畴的决策树C4.5法进行变压器故障诊断的方法。由于C4.5方法可方便地处理连续特征模式且有从样本学习判定规则的功能,因此应用中显示了该方法对于变压器故障诊断的适用性。在讨论变压器故障空间的基础上,针对已积累的故障变压器的大量油中溶解气体等数据,考察了各类故障的特征偏置,并在此基础上构造出组合决策树诊断模型,实现了变压器故障由粗到细的逐级划分,有利于提高诊断的准确性。实例表明该模型的有效性。 展开更多
关键词 电力变压器 油中溶解气体分析 故障诊断 C4.5决策树方法
在线阅读 下载PDF
利用小波神经网络的电力变压器故障诊断方法 被引量:24
17
作者 陈伟根 潘翀 +2 位作者 王有元 云玉新 孙才新 《高电压技术》 EI CAS CSCD 北大核心 2007年第8期52-55,共4页
为提高变压器传统油中溶解气体分析(DGA)的故障诊断能力,提出了一种利用小波神经网络(WNN)的变压器故障诊断方法。WNN隐含层采用离散仿射小波函数,仿照前馈BP神经网络算法构造WNN,引入学习率和动量系数来训练网络。实验结果表明:相同条... 为提高变压器传统油中溶解气体分析(DGA)的故障诊断能力,提出了一种利用小波神经网络(WNN)的变压器故障诊断方法。WNN隐含层采用离散仿射小波函数,仿照前馈BP神经网络算法构造WNN,引入学习率和动量系数来训练网络。实验结果表明:相同条件下,较之传统比值法与BP神经网络,WNN的故障模式识别准确率更高,对照BP神经网络,所提出的WNN变压器故障诊断方法在稳定性和收敛时间方面表现更优。 展开更多
关键词 变压器 溶解气体分析 人工神经网络 小波神经网络 故障诊断 方法
在线阅读 下载PDF
基于贝叶斯网络和DGA的变压器故障诊断 被引量:24
18
作者 王永强 律方成 李和明 《高电压技术》 EI CAS CSCD 北大核心 2004年第5期12-13,36,共3页
用 3步法构造贝叶斯网络 (BN)方法 ,结合油中溶解气体分析 (DGA)的三比值法后 ,引入大型变压器的故障诊断 ,提出了基于BN理论和DGA方法的变压器智能故障诊断模型。 2
关键词 电力变压器 故障诊断 溶解气体分析 DGA 贝叶斯网络
在线阅读 下载PDF
基于深度信念网络的电力变压器故障分类建模 被引量:83
19
作者 石鑫 朱永利 +2 位作者 萨初日拉 王刘旺 孙岗 《电力系统保护与控制》 EI CSCD 北大核心 2016年第1期71-76,共6页
基于深度信念网络,构建了深度信念网络分类器模型,分析并用典型数据集对其分类性能进行测试。在此基础上结合电力变压器油中溶解气体分析数据,提出了基于深度信念网络分类器的变压器故障分类新方法,它使用油中溶解气体分析结果作为故障... 基于深度信念网络,构建了深度信念网络分类器模型,分析并用典型数据集对其分类性能进行测试。在此基础上结合电力变压器油中溶解气体分析数据,提出了基于深度信念网络分类器的变压器故障分类新方法,它使用油中溶解气体分析结果作为故障分类属性。对所提出的方法进行了测试,测试结果表明该方法适用于变压器故障分类,具有较强的从样本中提取特征的能力和容错特性,性能优于BP神经网络和支持向量机的方法。 展开更多
关键词 电力变压器 故障诊断 深度信念网络 无标签样本 油中溶解气体分析
在线阅读 下载PDF
核主成分分析与随机森林相结合的变压器故障诊断方法 被引量:49
20
作者 胡青 孙才新 +1 位作者 杜林 李剑 《高电压技术》 EI CAS CSCD 北大核心 2010年第7期1725-1729,共5页
油中溶解气体分析(dissolved gas analysis,DGA)是变压器故障诊断的重要方法。变压器故障诊断研究大多采用人工智能方法学习建立单个分类器,与单个分类器相比,分类器群能够更全面地学习样本集特性,达到更好的诊断效果。分类器间的差异... 油中溶解气体分析(dissolved gas analysis,DGA)是变压器故障诊断的重要方法。变压器故障诊断研究大多采用人工智能方法学习建立单个分类器,与单个分类器相比,分类器群能够更全面地学习样本集特性,达到更好的诊断效果。分类器间的差异性是影响群体性能的主要因素,针对DGA特征量较少训练得到的分类器差异不大的问题,提出将核主成分分析(kernel principle component analysis,KPCA)与随机森林方法相结合,KPCA将样本从低维的状态空间非线性地映射到高维的核空间,在核空间用随机森林方法训练得到分类器群。对DGA故障样本以及加噪样本的诊断实验结果表明,KPCA能够有效地提取故障特征,用核特征量建模的诊断效果优于直接采用DGA特征量,分类器群的诊断效果以及抗干扰能力均高于单个分类器。 展开更多
关键词 电力变压器 故障诊断 溶解气体分析 分类器群 随机森林 核主成分分析
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部