In order to form an algorithm for distribution network routing,an automatic routing method of distribution network planning was proposed based on the shortest path.The problem of automatic routing was divided into two...In order to form an algorithm for distribution network routing,an automatic routing method of distribution network planning was proposed based on the shortest path.The problem of automatic routing was divided into two steps in the method:the first step was that the shortest paths along streets between substation and load points were found by the basic ant colony algorithm to form a preliminary radial distribution network,and the second step was that the result of the shortest path was used to initialize pheromone concentration and pheromone updating rules to generate globally optimal distribution network.Cases studies show that the proposed method is effective and can meet the planning requirements.It is verified that the proposed method has better solution and utility than planning method based on the ant colony algorithm.展开更多
Rural power network planning is a complicated nonlinear optimized combination problem which based on load forecasting results, and its actual load is affected by many uncertain factors, which influenced optimization r...Rural power network planning is a complicated nonlinear optimized combination problem which based on load forecasting results, and its actual load is affected by many uncertain factors, which influenced optimization results of rural power network planning. To solve the problems, the interval algorithm was used to modify the initial search method of uncertainty load mathematics model in rural network planning. Meanwhile, the genetic/tabu search combination algorithm was adopted to optimize the initialized network. The sample analysis results showed that compared with the certainty planning, the improved method was suitable for urban medium-voltage distribution network planning with consideration of uncertainty load and the planning results conformed to the reality.展开更多
This work presents a fuzzy based methodology for distribution system feeder reconfiguration considering DSTATCOM with an objective of minimizing real power loss and operating cost. Installation costs of DSTATCOM devic...This work presents a fuzzy based methodology for distribution system feeder reconfiguration considering DSTATCOM with an objective of minimizing real power loss and operating cost. Installation costs of DSTATCOM devices and the cost of system operation, namely, energy loss cost due to both reconfiguration and DSTATCOM placement, are combined to form the objective function to be minimized. The distribution system tie switches, DSTATCOM location and size have been optimally determined to obtain an appropriate operational condition. In the proposed approach, the fuzzy membership function of loss sensitivity is used for the selection of weak nodes in the power system for the placement of DSTATCOM and the optimal parameter settings of the DFACTS device along with optimal selection of tie switches in reconfiguration process are governed by genetic algorithm(GA). Simulation results on IEEE 33-bus and IEEE 69-bus test systems concluded that the combinatorial method using DSTATCOM and reconfiguration is preferable to reduce power losses to 34.44% for 33-bus system and to 45.43% for 69-bus system.展开更多
基金Project(2009CB219703) supported by the National Basic Research Program of ChinaProject(2011AA05A117) supported by the National High Technology Research and Development Program of China
文摘In order to form an algorithm for distribution network routing,an automatic routing method of distribution network planning was proposed based on the shortest path.The problem of automatic routing was divided into two steps in the method:the first step was that the shortest paths along streets between substation and load points were found by the basic ant colony algorithm to form a preliminary radial distribution network,and the second step was that the result of the shortest path was used to initialize pheromone concentration and pheromone updating rules to generate globally optimal distribution network.Cases studies show that the proposed method is effective and can meet the planning requirements.It is verified that the proposed method has better solution and utility than planning method based on the ant colony algorithm.
文摘Rural power network planning is a complicated nonlinear optimized combination problem which based on load forecasting results, and its actual load is affected by many uncertain factors, which influenced optimization results of rural power network planning. To solve the problems, the interval algorithm was used to modify the initial search method of uncertainty load mathematics model in rural network planning. Meanwhile, the genetic/tabu search combination algorithm was adopted to optimize the initialized network. The sample analysis results showed that compared with the certainty planning, the improved method was suitable for urban medium-voltage distribution network planning with consideration of uncertainty load and the planning results conformed to the reality.
基金supported by Borujerd Branch,Islamic Azad University Iran
文摘This work presents a fuzzy based methodology for distribution system feeder reconfiguration considering DSTATCOM with an objective of minimizing real power loss and operating cost. Installation costs of DSTATCOM devices and the cost of system operation, namely, energy loss cost due to both reconfiguration and DSTATCOM placement, are combined to form the objective function to be minimized. The distribution system tie switches, DSTATCOM location and size have been optimally determined to obtain an appropriate operational condition. In the proposed approach, the fuzzy membership function of loss sensitivity is used for the selection of weak nodes in the power system for the placement of DSTATCOM and the optimal parameter settings of the DFACTS device along with optimal selection of tie switches in reconfiguration process are governed by genetic algorithm(GA). Simulation results on IEEE 33-bus and IEEE 69-bus test systems concluded that the combinatorial method using DSTATCOM and reconfiguration is preferable to reduce power losses to 34.44% for 33-bus system and to 45.43% for 69-bus system.