The power dissipation characteristics of pulsed power switch reversely switched dynistors (RSDs) are investigated in this paper. According to the expressions of voltage on RSD, derived from the plasma bipolar drift ...The power dissipation characteristics of pulsed power switch reversely switched dynistors (RSDs) are investigated in this paper. According to the expressions of voltage on RSD, derived from the plasma bipolar drift model and the RLC circuit equations of RSD main loop, the simulation waveforms of current and voltage on RSD are acquired through iterative calculation by using the fourth order Runge-Kutta method, then the curve of transient power on RSD versus time is obtained. The result shows that the total dissipation on RSD is trivial compared with the pulse discharge energy and the commutation dissipation can be nearly ignored compared with the quasi-static dissipation. These characteristics can make the repetitive frequency of RSD increase largely. The experimental results prove the validity of simulation calculations. The influence factors on power dissipation are discussed. The power dissipation increases with the increase of the peak current and the n-base width and with the decrease of n-base doping concentration. In order to keep a low power dissipation, it is suggested that the n-base width should be smaller than 320μm when doping concentration is 1.0×10^14cm^-3 while the doping concentration should be higher than 5.8×10^13cm^-3 when n-base width is 270μm.展开更多
As for the Domino effect dv/dt and electromagnetic interference during the rapid switching course of single-chip switching power supply,this article firstly analyzes electromagnetic interference source,and then diagno...As for the Domino effect dv/dt and electromagnetic interference during the rapid switching course of single-chip switching power supply,this article firstly analyzes electromagnetic interference source,and then diagnoses the essential interaction relationship between interference and switching activity based on the timely and area measured waveform,analyzes and studies the production mechanism and coupling path of interference mode,and sets up circuit model according to the features of transverse mode interference and common mode interference.Put forward different suppression methods finally.展开更多
For the advantages of easy realization and rapidly intelligent response,the one-cycle control was applied in five-phase six-leg switching power amplifier for magnetic bearing.This paper improves the one-cycle control ...For the advantages of easy realization and rapidly intelligent response,the one-cycle control was applied in five-phase six-leg switching power amplifier for magnetic bearing.This paper improves the one-cycle control considering resistance voltage drop and derives its mathematical models.The improved algorithm is compared with the former one.The simulation and experimental results show that the improved algorithm can effectively reduce the output current ripple,achieve good tracking of the given current,improve the control accuracy,and verify the effectiveness and superiority of the method.展开更多
To achieve optimal configuration of switching devices in a power distribution system,this paper proposes a repulsive firefly algorithm-based optimal switching device placement method.In this method,the influence of te...To achieve optimal configuration of switching devices in a power distribution system,this paper proposes a repulsive firefly algorithm-based optimal switching device placement method.In this method,the influence of territorial repulsion during firefly courtship is considered.The algorithm is practically applied to optimize the position and quantity of switching devices,while avoiding its convergence to the local optimal solution.The experimental simulation results have showed that the proposed repulsive firefly algorithm is feasible and effective,with satisfying global search capability and convergence speed,holding potential applications in setting value calculation of relay protection and distribution network automation control.展开更多
High power switch is one of the most important components in pulsed power technology. The RSD (Reversely Switched Dynistor), turned on by a thin layer of an electron-hole plasma, is a high power semiconductor switch...High power switch is one of the most important components in pulsed power technology. The RSD (Reversely Switched Dynistor), turned on by a thin layer of an electron-hole plasma, is a high power semiconductor switch. In this study, the RSD turn-on conditions were investigated by numerical analysis and device simulation as well as the experiments conducted to validate the turn-on conditions. A design of a triggering high-voltage RSD is presented based on a saturable transformer.展开更多
Through theoretical analysis of thyristor switch, criterion of turn-off was derived for the design of thyristor switch. The expression of parameter design and its math model during the turn-off were deduced. The simul...Through theoretical analysis of thyristor switch, criterion of turn-off was derived for the design of thyristor switch. The expression of parameter design and its math model during the turn-off were deduced. The simulation and experiment have been accomplished to validate the analysis.展开更多
An acoustic-optic Q-switched all-fiber laser With a high-repetition-rate, a short pulse width, a wide spectrum, and a high conversion efficiency is experimentally demonstrated. In the laser configuration, a (1+1)x ...An acoustic-optic Q-switched all-fiber laser With a high-repetition-rate, a short pulse width, a wide spectrum, and a high conversion efficiency is experimentally demonstrated. In the laser configuration, a (1+1)x 1 side-pumping coupler is introduced to perform backward pumping, and a 10/130%tm Yb fiber is adopted. The acoustic-optic component operates in the first direction, achieving a Q-switched pulse with a repetition rate adjustable in the range of 20 kHz-80 kHz. Under a repetition rate of 20 kHz and a pump power of 6.76 W, the fiber laser obtains a highly efficient and stable pulse output, with an average power of 4.3 W, a pulse width of 56 ns, a peak power of 3.83 kW, and a power density of 1.39x 101~ W/cm2. Particularly, the optic-optic conversion efficiency of the laser reaches as high as 64%. Another feature of the pulsed laser is that the high reflection mirror reflects the pump light as well, which brings the secondary absorption of the pump power into the gain fiber.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos 50277016 and 50577028)supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No 20050487044)
文摘The power dissipation characteristics of pulsed power switch reversely switched dynistors (RSDs) are investigated in this paper. According to the expressions of voltage on RSD, derived from the plasma bipolar drift model and the RLC circuit equations of RSD main loop, the simulation waveforms of current and voltage on RSD are acquired through iterative calculation by using the fourth order Runge-Kutta method, then the curve of transient power on RSD versus time is obtained. The result shows that the total dissipation on RSD is trivial compared with the pulse discharge energy and the commutation dissipation can be nearly ignored compared with the quasi-static dissipation. These characteristics can make the repetitive frequency of RSD increase largely. The experimental results prove the validity of simulation calculations. The influence factors on power dissipation are discussed. The power dissipation increases with the increase of the peak current and the n-base width and with the decrease of n-base doping concentration. In order to keep a low power dissipation, it is suggested that the n-base width should be smaller than 320μm when doping concentration is 1.0×10^14cm^-3 while the doping concentration should be higher than 5.8×10^13cm^-3 when n-base width is 270μm.
基金Tianjin Natunal science Foundation of China(No:05YFSYSF033)
文摘As for the Domino effect dv/dt and electromagnetic interference during the rapid switching course of single-chip switching power supply,this article firstly analyzes electromagnetic interference source,and then diagnoses the essential interaction relationship between interference and switching activity based on the timely and area measured waveform,analyzes and studies the production mechanism and coupling path of interference mode,and sets up circuit model according to the features of transverse mode interference and common mode interference.Put forward different suppression methods finally.
基金supported by the National Science Foundation of China(No.51607096)。
文摘For the advantages of easy realization and rapidly intelligent response,the one-cycle control was applied in five-phase six-leg switching power amplifier for magnetic bearing.This paper improves the one-cycle control considering resistance voltage drop and derives its mathematical models.The improved algorithm is compared with the former one.The simulation and experimental results show that the improved algorithm can effectively reduce the output current ripple,achieve good tracking of the given current,improve the control accuracy,and verify the effectiveness and superiority of the method.
基金supported by the State Grid Science and Technology Project “Research on Technology System and Applications Scenarios of Artificial Intelligence in Power System” (No. SGZJ0000KXJS1800435)Key Technology Project of State Grid Shanghai Municipal Electric Power Company “Research and demonstration of Shanghai power grid reliability analysis platform”Key Technology Project of China Electric Power Research Institute “Research on setting calculation technology of power grid phase protection based on Artificial Intelligence” (JB83-19-007)
文摘To achieve optimal configuration of switching devices in a power distribution system,this paper proposes a repulsive firefly algorithm-based optimal switching device placement method.In this method,the influence of territorial repulsion during firefly courtship is considered.The algorithm is practically applied to optimize the position and quantity of switching devices,while avoiding its convergence to the local optimal solution.The experimental simulation results have showed that the proposed repulsive firefly algorithm is feasible and effective,with satisfying global search capability and convergence speed,holding potential applications in setting value calculation of relay protection and distribution network automation control.
基金supported by the National Natural Science Foundation of China (Nos.50277016,50577028)Specialized Research Fund for the Doctoral Program of Higher Education (No.20050487044)
文摘High power switch is one of the most important components in pulsed power technology. The RSD (Reversely Switched Dynistor), turned on by a thin layer of an electron-hole plasma, is a high power semiconductor switch. In this study, the RSD turn-on conditions were investigated by numerical analysis and device simulation as well as the experiments conducted to validate the turn-on conditions. A design of a triggering high-voltage RSD is presented based on a saturable transformer.
基金the National Meg-Science Engineering Project of the Chinese Government.
文摘Through theoretical analysis of thyristor switch, criterion of turn-off was derived for the design of thyristor switch. The expression of parameter design and its math model during the turn-off were deduced. The simulation and experiment have been accomplished to validate the analysis.
基金supported by the National Natural Science Foundation of China(Grant No.61307057)the State Key Laboratory of Tribology,Tsinghua University,China(Grant No.SKLT12B08)China Postdoctoral Science Foundation(Grant Nos.2012M520258 and 2013T60109)
文摘An acoustic-optic Q-switched all-fiber laser With a high-repetition-rate, a short pulse width, a wide spectrum, and a high conversion efficiency is experimentally demonstrated. In the laser configuration, a (1+1)x 1 side-pumping coupler is introduced to perform backward pumping, and a 10/130%tm Yb fiber is adopted. The acoustic-optic component operates in the first direction, achieving a Q-switched pulse with a repetition rate adjustable in the range of 20 kHz-80 kHz. Under a repetition rate of 20 kHz and a pump power of 6.76 W, the fiber laser obtains a highly efficient and stable pulse output, with an average power of 4.3 W, a pulse width of 56 ns, a peak power of 3.83 kW, and a power density of 1.39x 101~ W/cm2. Particularly, the optic-optic conversion efficiency of the laser reaches as high as 64%. Another feature of the pulsed laser is that the high reflection mirror reflects the pump light as well, which brings the secondary absorption of the pump power into the gain fiber.